Luogu SP839 OPTM - Optimal Marks(按位最小割)
这道题和 BZOJ 2400 是一道题,不多讲了
CODE
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
template<typename T>inline void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int inf = 1e9;
const int MAXN = 505;
const int MAXM = 30005;
int n, m, fir[MAXN], S, T, cnt;
struct edge { int to, nxt; int c; }e[MAXM];
inline void add(int u, int v, int cc, int rc=0) {
e[cnt] = (edge){ v, fir[u], cc }; fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], rc }; fir[v] = cnt++;
}
int dis[MAXN], vis[MAXN], info[MAXN], cur, q[MAXN];
inline bool bfs() {
int head = 0, tail = 0;
vis[S] = ++cur; q[tail++] = S;
while(head < tail) {
int u = q[head++];
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && vis[e[i].to] != cur)
vis[e[i].to] = cur, dis[e[i].to] = dis[u] + 1, q[tail++] = e[i].to;
}
if(vis[T] == cur) memcpy(info, fir, (T+1)<<2);
return vis[T] == cur;
}
int dfs(int u, int Max) {
if(u == T || !Max) return Max;
int flow=0, delta;
for(int &i = info[u]; ~i; i = e[i].nxt)
if(e[i].c && dis[e[i].to] == dis[u] + 1 && (delta=dfs(e[i].to, min(e[i].c, Max-flow)))) {
e[i].c -= delta, e[i^1].c += delta, flow += delta;
if(flow == Max) return flow;
}
return flow;
}
inline int dinic() {
memset(vis, 0, sizeof vis);
int flow=0, x;
while(bfs()) {
while((x=dfs(S, inf))) flow+=x;
}
return flow;
}
int A[MAXN], X[3005], Y[3005], ans[MAXN];
bool flg[MAXN];
void Getans(int u, int val) {
ans[u] += val; flg[u] = 1;
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && !flg[e[i].to])
Getans(e[i].to, val);
}
int main () {
int kase;
read(kase);
while(kase--) {
read(n); read(m); S = 0, T = n+1;
memset(A, -1, sizeof A);
for(int i = 1; i <= m; ++i) read(X[i]), read(Y[i]);
int tot, x, y;
read(tot); while(tot--) read(x), read(y), A[x] = y;
for(int bit = 0; bit < 31; ++bit) {
memset(fir, -1, sizeof fir); cnt = 0;
for(int i = 1; i <= m; ++i) add(X[i], Y[i], 1, 1);
for(int i = 1; i <= n; ++i) {
if(A[i] < 0) continue;
if(A[i]&(1<<bit)) add(S, i, inf);
else add(i, T, inf);
}
memset(flg, 0, sizeof flg);
dinic(); Getans(S, 1<<bit);
}
for(int i = 1; i <= n; ++i)
printf("%d\n", ans[i]), ans[i] = 0;
}
}
Luogu SP839 OPTM - Optimal Marks(按位最小割)的更多相关文章
- BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)
题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图 ...
- 图论(网络流):SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...
- SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks no tags You are given an undirected graph G(V, E). Each vertex has a mark whic ...
- SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)
http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...
- SPOJ-OPTM Optimal Marks ★★(按位建图 && 最小割)
[题意]给出一个无向图,每个点有一个标号mark[i],不同点可能有相同的标号.对于一条边(u, v),它的权值定义为mark[u] xor mark[v].现在一些点的标号已定,请决定剩下点的标号, ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- 【bzoj2400】Spoj 839 Optimal Marks 按位最大流
Spoj 839 Optimal Marks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 908 Solved: 347[Submit][Stat ...
- SPOJ839 OPTM - Optimal Marks
传送门 闵神讲网络流应用的例题,来水一水 要写出这道题,需要深入理解两个概念,异或和最小割. 异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割.然后累加即可. 然后是最小割把一张 ...
- 【Luogu】P2057善意的投票(最小割转最大流)
题目链接 也算水题一道吧,不过Round1感性理解一下就xjb建了个图,40 Round2仔细分析了一会,理性建了个图,90 然后分析了半天……改大数组就A了…… 从S到所有值为1的点连一条inf的边 ...
随机推荐
- MySQL 配置参数优化
MySQL 配置参数优化 1.修改back_log参数值:由默认的50修改为500 back_log=500back_log值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中 ...
- 事务的ACID
事务提供一种机制将一个活动涉及的所有操作纳入到一个不可分割的执行单元,组成事务的所有操作只有在所有操作均能正常执行的情况下方能提交,只要其中任一操作执行失败,都将导致整个事务的回滚. 简单地说,事务提 ...
- 如何解决error: failed to push some refs
$ git push -u origin master To github.com:a653398363/testtest.git ! [rejected] master -> master ( ...
- 【转帖】CRI-O 1.0 正式发布
CRI-O 1.0 正式发布 http://www.sohu.com/a/200141920_465914 CRI-O 出来之后 docker 也就可有可无了 docker创造性的提出了 将依赖关系封 ...
- 利用Python进行数据分析 第4章 NumPy基础-数组与向量化计算(3)
4.2 通用函数:快速的元素级数组函数 通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数. 1)一元(unary)ufunc,如,sqrt和exp函数 2)二元(unary) ...
- python2.7 编码问题
python 2.7编码问题,着实令人头疼不已,这两天抽闲想真正弄明白.需要弄清楚这个问题,首先需要明白ASCII,Unicode 和 UTF-8之间的关系. 进行对上述几种概念进行描述之前,先进行简 ...
- MongoDB查询操作
按条件查询 比较操作:$lt,$lte,$gt,$gte,$ne db.user.find({}}); $or :包含多个条件,他们之间为or的关系 ,$nor相当于or取反 db.user.find ...
- RDS for MySQL 逻辑备份文件恢复到自建数据库
使用MySQL自带的 mysqldump 工具可以通过逻辑备份文件恢复数据库,本文将介绍详细的逻辑备份恢复数据库操作步骤. 说明 通过物理备份文件恢复到自建数据库请参见RDS for MySQL 物理 ...
- 使用layer.open 父页面获取子页面输入文本框中的值
$(function () { $("#confirmpassword").click(function () { var pwd = $("#txtPwd") ...
- Win7升级Win10系统提示错误0x80070057的解决方法
Win7系统用户在通过Windows Update来升级Win10系统时,有时会出现0x80070057的错误代码从而导致无法继续升级.下面好系统重装助手就来告诉大家Win7升级Win10系统出现0x ...