这道题和 BZOJ 2400 是一道题,不多讲了

CODE

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
template<typename T>inline void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int inf = 1e9;
const int MAXN = 505;
const int MAXM = 30005;
int n, m, fir[MAXN], S, T, cnt;
struct edge { int to, nxt; int c; }e[MAXM];
inline void add(int u, int v, int cc, int rc=0) {
e[cnt] = (edge){ v, fir[u], cc }; fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], rc }; fir[v] = cnt++;
}
int dis[MAXN], vis[MAXN], info[MAXN], cur, q[MAXN];
inline bool bfs() {
int head = 0, tail = 0;
vis[S] = ++cur; q[tail++] = S;
while(head < tail) {
int u = q[head++];
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && vis[e[i].to] != cur)
vis[e[i].to] = cur, dis[e[i].to] = dis[u] + 1, q[tail++] = e[i].to;
}
if(vis[T] == cur) memcpy(info, fir, (T+1)<<2);
return vis[T] == cur;
}
int dfs(int u, int Max) {
if(u == T || !Max) return Max;
int flow=0, delta;
for(int &i = info[u]; ~i; i = e[i].nxt)
if(e[i].c && dis[e[i].to] == dis[u] + 1 && (delta=dfs(e[i].to, min(e[i].c, Max-flow)))) {
e[i].c -= delta, e[i^1].c += delta, flow += delta;
if(flow == Max) return flow;
}
return flow;
}
inline int dinic() {
memset(vis, 0, sizeof vis);
int flow=0, x;
while(bfs()) {
while((x=dfs(S, inf))) flow+=x;
}
return flow;
}
int A[MAXN], X[3005], Y[3005], ans[MAXN];
bool flg[MAXN];
void Getans(int u, int val) {
ans[u] += val; flg[u] = 1;
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && !flg[e[i].to])
Getans(e[i].to, val);
}
int main () {
int kase;
read(kase);
while(kase--) {
read(n); read(m); S = 0, T = n+1;
memset(A, -1, sizeof A);
for(int i = 1; i <= m; ++i) read(X[i]), read(Y[i]);
int tot, x, y;
read(tot); while(tot--) read(x), read(y), A[x] = y;
for(int bit = 0; bit < 31; ++bit) {
memset(fir, -1, sizeof fir); cnt = 0;
for(int i = 1; i <= m; ++i) add(X[i], Y[i], 1, 1);
for(int i = 1; i <= n; ++i) {
if(A[i] < 0) continue;
if(A[i]&(1<<bit)) add(S, i, inf);
else add(i, T, inf);
}
memset(flg, 0, sizeof flg);
dinic(); Getans(S, 1<<bit);
}
for(int i = 1; i <= n; ++i)
printf("%d\n", ans[i]), ans[i] = 0;
}
}

Luogu SP839 OPTM - Optimal Marks(按位最小割)的更多相关文章

  1. BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)

    题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图 ...

  2. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  3. SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks no tags  You are given an undirected graph G(V, E). Each vertex has a mark whic ...

  4. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  5. SPOJ-OPTM Optimal Marks ★★(按位建图 && 最小割)

    [题意]给出一个无向图,每个点有一个标号mark[i],不同点可能有相同的标号.对于一条边(u, v),它的权值定义为mark[u] xor mark[v].现在一些点的标号已定,请决定剩下点的标号, ...

  6. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  7. 【bzoj2400】Spoj 839 Optimal Marks 按位最大流

    Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 908  Solved: 347[Submit][Stat ...

  8. SPOJ839 OPTM - Optimal Marks

    传送门 闵神讲网络流应用的例题,来水一水 要写出这道题,需要深入理解两个概念,异或和最小割. 异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割.然后累加即可. 然后是最小割把一张 ...

  9. 【Luogu】P2057善意的投票(最小割转最大流)

    题目链接 也算水题一道吧,不过Round1感性理解一下就xjb建了个图,40 Round2仔细分析了一会,理性建了个图,90 然后分析了半天……改大数组就A了…… 从S到所有值为1的点连一条inf的边 ...

随机推荐

  1. mui 打包发布ios 测试

    1.首先在Hbuilder新建一个app项目,把你的代码放进来 2.在manifest.json里设置你想要的一切,图标,应用名,描述,入口页面等等等,然后再配置好你程序里需要用到的模块权限,按需配置 ...

  2. java之理解面向对象

    1.程序设计的三种基本结构 顺序结构 顺序结构表示程序中的各操作是按照它们在源代码中的排列顺序依次执行的 选择结构 选择结构表示程序的处理需要根据某个特定的条件选择其中的一个分支执行.选择结构有单选择 ...

  3. Sharding-Jdbc 插件应用

    Sharding-Jdbc介绍 Sharding-Jdbc在3.0后改名为Shardingsphere它由Sharding-JDBC.Sharding-Proxy和Sharding-Sidecar(计 ...

  4. Android 把枪/PDA 扫描头自回车没用 处理方法

    XML 控件加上属性 android:imeOptions="actionNone"

  5. 体验三大JavaScript文件上传库(Uppy.js/Filepond/Dropzone)

    最近发现了一个高颜值的前端上传组件Uppy.js,立即上手体验了一波,感觉还不错.然后又看到同类型的Filepond以及Dropzone.js,对比体验了一下,感觉都很优秀,但是在体验过程中,都遇到了 ...

  6. NodeJs 的Module.export 和 export

    NodeJs  的Module.export 和 export 是一样的. 但是Module.export ={....} 可以起效,.export ={....} 是失效的. 这里的export  ...

  7. ant design pro超详细入门教程

    1.Ant Design Pro 初了解 说到ant design pro,得先了解一下ant design是个什么东西?ant design蚂蚁金服基于react打造的一个服务于企业级产品的UI框架 ...

  8. 干货,阿里P8浅谈对java线程池的理解(面试必备)

    线程池的概念 线程池由任务队列和工作线程组成,它可以重用线程来避免线程创建的开销,在任务过多时通过排队避免创建过多线程来减少系统资源消耗和竞争,确保任务有序完成:ThreadPoolExecutor ...

  9. Ubuntu 远程管理常用命令

    目标 关机/重启 shutdown 查看或配置网卡信息 ifconfig ping 远程登录和复制文件 ssh scp 01. 关机/重启 序号 命令 对应英文 作用 01 shutdown 选项 时 ...

  10. django启动通过ip或是域名访问

    setting.py里面的ALLOWED_HOSTS = ['localhost','域名','本机ip'] 启动时一般都是命令行 python manage.py runserver [端口号]  ...