Power of Cryptography

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 26622   Accepted: 13301

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

2 16
3 27
7 4357186184021382204544

Sample Output

4
3
1234

Source

 
题意:
求一个整数k,使得k满足kn=p。
 
题意分析:
1)
 1<=n<= 200, 1<=p<10101 ,1<=k<=109 , kn = p. 
最直观的解题思路是使用 高精度算法,但是这道题可以使用double巧妙地避开。

用pow函数求解:

k = pow(p, 1.0/n)

double的取值范围为10^(-307)~10^308,但小数精度只有前16位, 其误差范围在10^(-15)的数量级左右.

这个误差级数仅会对n的小数部分存在影响,四舍五入后对整数部分是无影响的.
而题目已经限定了,n、k、p均是整数,因此使用公式法可以直接得到准确结果.

假若题目不存在整数限制,当n极大时,k会极小(无限迫近1,对小数精度极高),
此时公式法则会因为精度问题而失效.

 #include<iostream>
#include<cmath>
using namespace std;
int main()
{
double n,p;
while(cin>>n>>p)
{
double k;
k = pow(p,1.0/n);
cout<<k<<endl;;
}
return ;
}

2)使用 高精度算法 + 二分法

首先,想要求 kn = p的k,不使用如上计算方法的公式法,只能枚举k,进行高精度乘法。

寻找k的方法,可以使用二分法。

那k的范围是什么呢,考虑样例7 4357186184021382204544,p是22位,22/7=3~4,向上取整,所以p是一个四位数,即1000<=p<=9999。

在这个范围进行二分查找,就可以找到k。

关于高精度算法,看过一个博文,想了解详情的可以移步=》从零开始学算法:高精度计算

c++ / % 四舍五入 向上取整ceil 向下取整floor

 #include<iostream>
#include<math.h>
#include<cstring>
#include<stdio.h>
using namespace std;
const int maxp = ;
//const int maxk = 12;
int p[maxp];
int k[maxp]; int Compare(int a[],int b[])
{///如果相等返回0,>返回1,<返回-1
if(a[0] > b[0]) return 1;
else if(a[] < b[]) return -;
else//位数相等,需要逐位判断
{
for(int i=a[];i>;i--)
{
if(a[i]>b[i]) return ;
else if(a[i] < b[i]) return -;
}
}
return ;
} void bigEqual(int n)
{///计算k^n,将结果存在k中
int temp[maxp];int Equal[maxp];
memset(Equal,,sizeof(Equal));//用来存放另一个乘数
memset(temp,,sizeof(temp));//用来存放每次相乘的结果
for(int i = ;i<=k[];i++)
Equal[i] = k[i];
for(int turn = ;turn<n;turn++)
{
for(int i=;i<=k[];i++)///计算k * Equal,存在temp中
{
for(int j=;j<=Equal[];j++)
{
temp[i+j-] += k[i]*Equal[j];
}
temp[] = Equal[]+k[]-;
for(int j=;j<=temp[];j++)///处理进位
{
if(temp[j]>=)
{
temp[j+] += temp[j]/;temp[j] = temp[j]%;
}
}
while(temp[temp[]+])
{
temp[]++;
temp[temp[]+] = temp[temp[]]/;
temp[temp[]] = temp[temp[]]%;
}
}
for(int m=;m<=temp[];m++)
Equal[m] = temp[m];//转存temp作为下一次的乘数
memset(temp,,sizeof(temp));
}
for(int i=;i<=Equal[];i++)
k[i] = Equal[i];
} int main()
{
char s[maxp];
int n;
while(scanf("%d %s",&n,&s) != EOF)
{
memset(p,,sizeof(p));
///将p处理成数组
p[] = strlen(s);//第一位存储p的位数
for(int i=p[]-;i>=;i--)
{
p[p[]-i] = s[i]-'';
}
int kLength = ceil((double)p[]/n);//向上取整
int Min = ,Max = ;
for(int i=;i<kLength;i++)
{
Min *=;
}
for(int i=;i<kLength;i++)
{
Max *=;Max += ;
}
///使用二分法查找
double Mid = (Min+Max)/;
for(int low = Min,up = Max;low<=up;)
{
memset(k,,sizeof(k));
///给k赋值为Mid
int i=;int temp = Mid;
while(temp)
{
k[i] = temp%;
temp = temp/;
i++;
}
k[] = i-;//k[0]存储k的长度
bigEqual(n);///计算k^n,将结果存储在k中
int j = Compare(k,p);
if(j == )//相等
break;
else if(j == )//k>p,向Mid的左侧查找
{
up = Mid-;Mid = (low+up)/;
}
else{//k<p,向Mid的右侧查找
low = Mid+;Mid = (low+up)/;
}
}
cout<<Mid<<endl;
}
return ;
}

告诫自己:

s不可以用String类型

string不可以用cin>>进行赋值

POJ 2109 -- Power of Cryptography的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  3. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

  4. poj 2109 Power of Cryptography (double 精度)

    题目:http://poj.org/problem?id=2109 题意:求一个整数k,使得k满足kn=p. 思路:exp()用来计算以e为底的x次方值,即ex值,然后将结果返回.log是自然对数,就 ...

  5. POJ - 2109 Power of Cryptography(高精度log+二分)

    Current work in cryptography involves (among other things) large prime numbers and computing powers ...

  6. POJ 2109 Power of Cryptography【高精度+二分 Or double水过~~】

    题目链接: http://poj.org/problem?id=2109 参考: http://blog.csdn.net/code_pang/article/details/8263971 题意: ...

  7. POJ 2109 Power of Cryptography 大数,二分,泰勒定理 难度:2

    import java.math.BigInteger; import java.util.Scanner; public class Main { static BigInteger p,l,r,d ...

  8. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  9. POJ 2109 :Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18258   Accepted: ...

随机推荐

  1. PAT Basic 1083 是否存在相等的差 (20 分)

    给定 N 张卡片,正面分别写上 1.2.…….N,然后全部翻面,洗牌,在背面分别写上 1.2.…….N.将每张牌的正反两面数字相减(大减小),得到 N 个非负差值,其中是否存在相等的差? 输入格式: ...

  2. HandlerMethodArgumentResolver完美解决 springmvc注入参数多传报错

    作为一个后端开发,能友好兼容前端参数传入错误等问题,在前端发布不小心多传一个参数导致系统错误的问题,一个广告系统是零容忍的,所以为了不犯错误,后端接收参数必须摒弃spring 的自动注入@Reques ...

  3. P2172 [国家集训队]部落战争 二分图最小不相交路径覆盖

    二分图最小不相交路径覆盖 #include<bits/stdc++.h> using namespace std; ; ; ; ], nxt[MAXM << ], f[MAXM ...

  4. jsp的标签库

    Java Server Pages Standard Tag Libray(JSTL):JSP 标准标签库,是一个定制标签类库的集合,用于解决一些常见的问题,例如迭代一个映射或者集合.条件测试.XML ...

  5. linux异步传输支持

    基于libusbx-1.0.18-rc1,libusbx现已重新merage到libusb.1. 初始化使用libusb_init初始化libusb,如果是单设备通信,ctx参数可以传NULL,表示使 ...

  6. UTC和GMT时间

    来源:https://www.cnblogs.com/qiuyi21/archive/2008/03/04/1089456.html UTC和GMT时间 每个地区都有自己的本地时间,在网上以及无线电通 ...

  7. wordpress网站不正常显示解决办法

    第一种:自己在后台修改了wordpress网址,导致不能登陆后台. 解决办法: 1.首先我们登录MySql数据库,这个不用我教吧: 2.查看表”wp_options”的数据(你的表不一定是以”wp”开 ...

  8. Spring源码解读(一)

    前期准备 首先搭建一个简单的Spring Demo工程 项目目录结构如下图所示: applicationContect.xml (可以取其他文件名,只要在加载配置文件时指定文件路径) <?xml ...

  9. Java web中不同浏览器间导出Excel文件名称乱码问题解决方案

    问题描述: 对于不同浏览器存在对中文编码格式问题,从而在导出Excel文件时,中文文件名出现乱码的情况,即在程序中给要导出的文件指定一个中文名字时,在浏览器上出现的下载框中的文件名出现了乱码,解决如下 ...

  10. flask学习导航主页

    我就学习了网易课堂的知了Flaskk. 十分感谢. └—01-Flask视图和URL ├—课时001.[Flask预热]课程介绍 ├—课时002.[Flask预热]Flask课程准备工作 ├—课时00 ...