我们仍然使用披萨直径的价格的数据

import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy)

二阶多项式回归

# In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--')
# In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 10. 100.]
[ 1. 14. 196.]
[ 1. 18. 324.]]
X_test
[[6], [8], [11], [16]]
X_test_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 11. 121.]
[ 1. 16. 256.]]
简单线性规划R方 0.809726797707665

三阶多项式回归

# In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.000e+01 1.000e+02 1.000e+03]
[1.000e+00 1.400e+01 1.960e+02 2.744e+03]
[1.000e+00 1.800e+01 3.240e+02 5.832e+03]]
X_test
[[6], [8], [11], [16]]
X_test_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.100e+01 1.210e+02 1.331e+03]
[1.000e+00 1.600e+01 2.560e+02 4.096e+03]]
三阶多项式回归R方 0.8356924156036954

九阶多项式回归

# In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03
1.00000000e+04 1.00000000e+05 1.00000000e+06 1.00000000e+07
1.00000000e+08 1.00000000e+09]
[1.00000000e+00 1.40000000e+01 1.96000000e+02 2.74400000e+03
3.84160000e+04 5.37824000e+05 7.52953600e+06 1.05413504e+08
1.47578906e+09 2.06610468e+10]
[1.00000000e+00 1.80000000e+01 3.24000000e+02 5.83200000e+03
1.04976000e+05 1.88956800e+06 3.40122240e+07 6.12220032e+08
1.10199606e+10 1.98359290e+11]]
X_test
[[6], [8], [11], [16]]
X_test_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.10000000e+01 1.21000000e+02 1.33100000e+03
1.46410000e+04 1.61051000e+05 1.77156100e+06 1.94871710e+07
2.14358881e+08 2.35794769e+09]
[1.00000000e+00 1.60000000e+01 2.56000000e+02 4.09600000e+03
6.55360000e+04 1.04857600e+06 1.67772160e+07 2.68435456e+08
4.29496730e+09 6.87194767e+10]]
九阶多项式回归R方 -0.09435666704291412

所有代码

 

# -*- coding: utf-8 -*-
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy) # In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--') # In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test)) # In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test)) # In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))

scikit-learn机器学习(三)多项式回归(二阶,三阶,九阶)的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. TensorFlow 便捷的实现机器学习 三

    TensorFlow 便捷的实现机器学习 三 MNIST 卷积神经网络 Fly Overview Enabling Logging with TensorFlow Configuring a Vali ...

  6. 【机器学习】多项式回归sklearn实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...

  7. 【机器学习】多项式回归python实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...

  8. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  9. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

随机推荐

  1. ORACLE归档日志满了之后,如何删除归档日志

    当ORACLE归档日志满后如何正确删除归档日志 版权声明:本文为博主原创文章,未经博主允许不得转载. 当ORACLE 归档日志满了后,将无法正常登入ORACLE,需要删除一部分归档日志才能正常登入OR ...

  2. 计算广告(4)----搜索广告召回(也叫match、触发)

    一.搜索广告形态 1.特征工程 特征主要有用户画像(user profile).用户行为(user behavior).广告(ad)和上下文(context)四部分组成,如下所示: 2.平台算法主要分 ...

  3. 深度解析Droupout与Batch Normalization

    Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dro ...

  4. 使用pyinstaller打包使用scrapy模块的程序运行时出现No such file or directory的问题解决

    解决的方案是利用pyinstaller的hook特性,步骤如下: 1.在项目目录新建hooks目录,目录中新建hooks-scrapy.py 文件,文件内容如下: from PyInstaller.u ...

  5. error: RPC failed; curl 18 transfer closed with outstanding read data remaining

    报错: error: RPC failed; curl 18 transfer closed with outstanding read data remaining fatal: The remot ...

  6. ansible模块补充

    1.fetch模块, 将远程机器上的文件拉取到本地,以ip或者主机名生成目录,并保留原来的目录结构,与copy模块的功能相反. 主要参数 : dest  --  目标地址 src -- 源地址 例子 ...

  7. 自己实现sizeof+大小端测试

    #define my_sizeof(type) ((char *)(&type+1)-(char*)(&type)) 同时大小端测试 如下 #include <stdio.h&g ...

  8. [Javascript] Create an Image with JavaScript Using Fetch and URL.createObjectURL

    Most developers are familiar with using img tags and assigning the src inside of HTML. It is also po ...

  9. 013_使用 user.txt 文件中的人员名单,在计算机中自动创建对应的账户并配置初始密码

    for i in `cat user.txt`do    useradd $i    echo "123456" | passwd --stdin $idone

  10. scrapy框架之进阶

    五大核心组件 - 引擎(Scrapy) 用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler) 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. ...