scikit-learn机器学习(三)多项式回归(二阶,三阶,九阶)
我们仍然使用披萨直径的价格的数据
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy)
二阶多项式回归
# In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--')
# In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test))
X_train
[[6], [8], [10], [14], [18]]
X_train_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 10. 100.]
[ 1. 14. 196.]
[ 1. 18. 324.]]
X_test
[[6], [8], [11], [16]]
X_test_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 11. 121.]
[ 1. 16. 256.]]
简单线性规划R方 0.809726797707665
三阶多项式回归
# In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test))
X_train
[[6], [8], [10], [14], [18]]
X_train_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.000e+01 1.000e+02 1.000e+03]
[1.000e+00 1.400e+01 1.960e+02 2.744e+03]
[1.000e+00 1.800e+01 3.240e+02 5.832e+03]]
X_test
[[6], [8], [11], [16]]
X_test_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.100e+01 1.210e+02 1.331e+03]
[1.000e+00 1.600e+01 2.560e+02 4.096e+03]]
三阶多项式回归R方 0.8356924156036954
九阶多项式回归
# In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))
X_train
[[6], [8], [10], [14], [18]]
X_train_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03
1.00000000e+04 1.00000000e+05 1.00000000e+06 1.00000000e+07
1.00000000e+08 1.00000000e+09]
[1.00000000e+00 1.40000000e+01 1.96000000e+02 2.74400000e+03
3.84160000e+04 5.37824000e+05 7.52953600e+06 1.05413504e+08
1.47578906e+09 2.06610468e+10]
[1.00000000e+00 1.80000000e+01 3.24000000e+02 5.83200000e+03
1.04976000e+05 1.88956800e+06 3.40122240e+07 6.12220032e+08
1.10199606e+10 1.98359290e+11]]
X_test
[[6], [8], [11], [16]]
X_test_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.10000000e+01 1.21000000e+02 1.33100000e+03
1.46410000e+04 1.61051000e+05 1.77156100e+06 1.94871710e+07
2.14358881e+08 2.35794769e+09]
[1.00000000e+00 1.60000000e+01 2.56000000e+02 4.09600000e+03
6.55360000e+04 1.04857600e+06 1.67772160e+07 2.68435456e+08
4.29496730e+09 6.87194767e+10]]
九阶多项式回归R方 -0.09435666704291412
所有代码
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy) # In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--') # In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test)) # In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test)) # In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))
scikit-learn机器学习(三)多项式回归(二阶,三阶,九阶)的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- TensorFlow 便捷的实现机器学习 三
TensorFlow 便捷的实现机器学习 三 MNIST 卷积神经网络 Fly Overview Enabling Logging with TensorFlow Configuring a Vali ...
- 【机器学习】多项式回归sklearn实现
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...
- 【机器学习】多项式回归python实现
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
随机推荐
- 学JAVA有哪些好的技巧方法?干货分享
作为编程语言届的老大哥,学习JAVA的人数不胜数,在这里分享一些学习JAVA的技巧以及方法,当然,这些技巧及方法使用范围包含但不限于JAVA. ① 笔记软件 印象笔记:多端互通很方便(https:// ...
- linux(3)
一.用户和组的管理 Linux/Unix是多用户系统: root是超级用户,拥有最高权限.其它用户及权限由root来管理.对比Windows系统: 控制面板 -> 管理工具 -> 计算机管 ...
- Petrozavodsk Winter Training Camp 2018 Jagiellonian U Contest Problem A. XOR
先把所有的数异或起来 得到sum 然后sum有一些位是1一些位是0 是0的位表示所有数里面有这位的数是偶数个 则无论怎么划分数 这一位对最终的答案都是不会有贡献的 因为偶数=偶数+偶数/奇数+奇数 ...
- Java多维数组定义以及常见异常
import java.lang.*; import java.util.*; public class Demo1 { public static void main(String args[]){ ...
- js获取文件后缀名
function extname(filename){ if(!filename||typeof filename!='string'){ return false }; let a = filena ...
- Flask实现简单的群聊和单聊
Flask是使用python写的一个简单轻量级的框架,今天我们使用Flask实现一个简单的单聊和群聊功能 . 主要思路 : 前端登录聊天室,聊天室信息包含用户的登录信息,相当于一个登录功能,会把这个信 ...
- 洛谷P1339 热浪【最短路】
题目:https://www.luogu.org/problemnew/show/P1339 题意:给定一张图,问起点到终点的最短路. 思路:dijkstra板子题. 很久没有写最短路了.总结一下di ...
- BZOJ 4864: [BeiJing 2017 Wc]神秘物质 (块状链表/平衡树 )
这就是一道数据结构裸题啊,最大极差就是区间最大值减最小值,最小极差就是相邻两个数差的最小值.然后平衡树splay/treap或者块状链表维护就行了. 第一次自己写块状链表,蛮好写,就是长..然后就BZ ...
- 【概率论】3-2:连续分布(Continuous Distributions)
title: [概率论]3-2:连续分布(Continuous Distributions) categories: Mathematic Probability keywords: Continuo ...
- 数据结构实验之二叉树五:层序遍历 (SDUT 3344)
#include <bits/stdc++.h> using namespace std; struct node { char data; struct node *lc, *rc; } ...