论文链接:https://aclweb.org/anthology/P18-1031

对文章内容的总结

文章研究了一些在general corous上pretrain LM,然后把得到的model transfer到text classiffication上 整个过程的训练技巧。
这些技巧的切入点是learning rate. 主要是三个:
(1)discriminative fine-tuning (其中的discriminative 指 fine-tune each layer with different learning rate LR)
(2)slanted triangular learning rate (在训练过程中先增加LR,增到预设的最大值后减小(减小速度<增加速度,所以LR随训练步数的曲线看起来是slanted triangle))
(3)在训练text classiffication model时, perform gradual unfreezing. (即先锁住所有层的参数,训练过程中从最后一层开始,每训练一个epoch向前放开一层)

以下是ABSTACT和INTRODUCTION主要内容的翻译:

Abstract:
Inductive transfer learning 已经在很大程度上影响了CV,但在NLP领域仍然需要task-specific微调或需要从头开始训练。这篇文章提出了一个Universial language model Fine-tuning (ULMFiT),这是一种可以应用于任何NLP任务的迁移学习方法。此外,文章还介绍了几种主要的fine-tuning language model 的技术。实验证明:ULMFiT outperforms the state-of-the-art on 三种文本分类任务(共计6个数据集)。
实验结果:
 
Introduction:
p1: Inductive transfer learning 对CV应用于CV时,rarely需要从头开始训练,只要fine-tuning from models that have been pretrained on ImageNet, MS-COCO等。
 
P2: Text classification属于NLP tasks with rea-world applications such as spam, fraud, and bot detection, emergency response and commercial document classification,such as for legal discovery.
 
P3: DL models 在很多NLP tasks 上取得了state-of-the-art, 这些models是从头开始训练,requiring large datasets 和days to converge. NLP领域中的transfer learning 研究大多是 transductive transfer. 而inductive transfer,如fine-tuning pre-trained word embeddings 这种只是针对第一层的transfer technique,已经在实际中有了large impact, 并且也被应用到了很多state-of-the-art models。但是recent approaches 在使用embeddings时只是把它们作为fixed parameters从头开始训练main task model,这样做limit了这些embedding的作用。
 
P4: 按照pretraining的思路,我们可以 do better than randomly initializing 模型的其他参数。However,有文献说inductive transfer via fine-tuning has been unsuccessful.
 
P5: 本文并不是想强调LM fine-tuning这个想法,而是要指出对模型进行有效训练的技术的缺乏才是阻碍transfer learning应用的关键所在。 LMs overfit to small datasets and suffered catastrophic forgetting when fine-tuned with a classifier. 跟CV相比,NLP models 非常shallow, 它们需要不同的fine-tuning methods.
 
P6: 本文提出ULMFiT来解决上述issuses, 并且在any NLP task上得到了robust inductive transfer. ULMFiT 的architecture是 3-layer LSTM。各层使用相同的超参数,除了 tuned  dropout hyperparameters 没有任何额外东西。ULMFiT 能够 outperforms highly engineered models.
 

Contributions:

(1) 提出ULMFiT,一种可以在any NLP task上achieve CV-like transfer learning的方法。
(2) 提出用于retain previous knowledge进而avoid catastrophic forgetting的novel techniques: discriminative fine-tuning, slanted triangular learning rate, and gradual unfreezing.
 (3) siginificantly outperform the state-of-the-art on six representative text classification datasets, with an error reduction of 18-24% on the majority of datasets.
(4) 本文方法能够实现非常sample-efficient 的transfer learning,并且做了extensive ablation analysis.
(5) 作者们预训练了模型并且可用于wider adoption.

#论文阅读# Universial language model fine-tuing for text classification的更多相关文章

  1. 论文笔记 - Noisy Channel Language Model Prompting for Few-Shot Text Classification

    Direct && Noise Channel 进一步把语言模型推理的模式分为了: 直推模式(Direct): 噪声通道模式(Noise channel). 直观来看: Direct ...

  2. 论文列表——text classification

    https://blog.csdn.net/BitCs_zt/article/details/82938086 列出自己阅读的text classification论文的列表,以后有时间再整理相应的笔 ...

  3. 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》

    https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...

  4. 【论文翻译】KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Grained Relationships

    KLMo:建模细粒度关系的知识图增强预训练语言模型 (KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Graine ...

  5. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  6. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  7. NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论

    1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...

  8. YOLO 论文阅读

    YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...

  9. BERT 论文阅读笔记

    BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...

随机推荐

  1. 变形课 HDU - 1181 【floyd传递闭包水题】

    呃......变形课上Harry碰到了一点小麻烦,因为他并不像Hermione那样能够记住所有的咒语而随意的将一个棒球变成刺猬什么的,但是他发现了变形咒语的一个统一规律:如果咒语是以a开头b结尾的一个 ...

  2. SP703 SERVICE - Mobile Service

    思路:DP 提交:1次 题解: 我们把处理到的要求作为阶段. \(f[i][x][y][z]\)表示第 \(i\) 个要求,三个人分别的位置. 发现这样有很多无用状态,因为显然在第 \(i\) 个要求 ...

  3. 【概率论】3-4:二维分布(Bivariate Distribution)

    title: [概率论]3-4:二维分布(Bivariate Distribution) categories: Mathematic Probability keywords: Discrete J ...

  4. 浅谈神经网络中的bias

    1.什么是bias? 偏置单元(bias unit),在有些资料里也称为偏置项(bias term)或者截距项(intercept term),它其实就是函数的截距,与线性方程 y=wx+b 中的 b ...

  5. Linux配置Tomcat8080端口 远程无法访问解决办法

    是因为Linux的防火墙没有开放8080端口 解决办法: /sbin/iptables -I INPUT -p tcp --dport 8080 -j ACCEPT #开启8080端口  /sbin/ ...

  6. Java并发指南10:Java 读写锁 ReentrantReadWriteLock 源码分析

    Java 读写锁 ReentrantReadWriteLock 源码分析 转自:https://www.javadoop.com/post/reentrant-read-write-lock#toc5 ...

  7. C++公有继承,私有继承和保护继承的区别

    昨天学习三种继承方式,有些比喻十分形象,特此分享. 首先说明几个术语: 1.基类 基类比起它的继承类是个更加抽象的概念,所描述的范围更大.所以可以看到有些抽象类,他们设计出来就是作为基类所存在的(有些 ...

  8. JAVA导入支持类

    导入支持类(可以是JDK基础类或者自己编写的类),可以供本类调用方法和属性. java中import用法: 1.单类型导入(single-type-import),例如import java.io.F ...

  9. mysqldump定时任务生成备份文件内容为空解决方法

    1问题:写好了一个mysqldump备份脚本(如图)直接执行可以正常生成备份文件,但在用crontab运行时却生成内容为空 2原因分析:由于mysqldump存在于全局环境变量mysql的bin下面, ...

  10. 性能分析 | Java进程CPU占用高导致的网页请求超时的故障排查

    一.发现问题的系统检查: 一个管理平台门户网页进统计页面提示请求超时,随进服务器操作系统检查load average超过4负载很大,PID为7163的进程占用到了800%多. 二.定位故障 根据这种故 ...