一、自旋锁

自旋锁是一种基础的同步原语,用于保障对共享数据的互斥访问。与互斥锁的相比,在获取锁失败的时候不会使得线程阻塞而是一直自旋尝试获取锁。当线程等待自旋锁的时候,CPU不能做其他事情,而是一直处于轮询忙等的状态。自旋锁主要适用于被持有时间短,线程不希望在重新调度上花过多时间的情况。实际上许多其他类型的锁在底层使用了自旋锁实现,例如多数互斥锁在试图获取锁的时候会先自旋一小段时间,然后才会休眠。如果在持锁时间很长的场景下使用自旋锁,则会导致CPU在这个线程的时间片用尽之前一直消耗在无意义的忙等上,造成计算资源的浪费。

二、CAS操作实现自旋锁

CAS(Compare and Swap),即比较并替换,实现并发算法时常用到的一种技术,这种操作提供了硬件级别的原子操作(通过锁总线的方式)。CAS操作的原型可以认为是:

bool CAS(V, A, B)

其中V代表内存中的变量,A代表期待的值,B表示新值。当V的值与A相等时,将V与B的值交换。逻辑上可以用下面的伪代码表示:

bool CAS(V, A, B)
{
if (V == A)
{
swap(V, B);
return true;
} return false;
}

需要强调的是上面的操作是原子的,要么不做,要么全部完成。

那么已经拥有CAS操作的情况下如何实现一个自旋锁呢?首先回忆自旋锁的用途,本质上我们是希望能够让一个线程在不满足进入临界区的条件时,不停的忙等轮询,直到可以运行的时候再继续(进入临界区)执行。那么,我们可能自然的想到使用一个bool变量来表示是否可以进入临界区,例如以下面的伪代码的逻辑:

while(flag == true);
flag = true;
/*
do something ...
*/
flag = false;
...

这样做的直观想法是当flag为true的时候表示已经有线程处于临界区内,只有当flag为fasle时才能进入,而在进入的时候立即将flag置为true。但是这样做明显存在一个问题,判断flag为false和设置flag为true并不是一个不可分割的整体,有可能出现类似下面这样的时序, 假设最初flag为false:

step thread 1 thread 2
1 while(flag == true);
2 while(flag == true);
3 flag = true
4 flag = true
5 do something do something
6 flag = false
7 flag = false

step是虚构的步骤,do something为一系列指令,这里写在一起表示并发执行。这里可以看出由于thread1读取判断flag的值与修改flag的值是两个独立的操作,中间插入了thread2的判断操作,最终使得有两个线程同时进入了临界区,这与我们的期望相悖。那么如何解决呢?如果能将读取判断与修改的操作合二为一,变成一个不可分割的整体,那么自然就不可能出现这种交错的场景。对于这样一个整体操作,我们希望它能读取内存中变量的值,并且当其等于特定值的时候,修改它为我们需要的另一个值。嗯......没错,这样我们就得到了CAS操作。

现在可以重新修改我们的同步方式,不停的进行期望flag为false的CAS操作 CAS(flag, flase, b) (这里b为true),直到其返回成功为止,再进行临界区中的操作,离开临界区时将flag置为false。

b = true;
while(!CAS(flag, false, b));
//do something
flag = false;

现在,判断操作与写入操作已经成为了一个整体,当一个线程的CAS操作成功的时候会阻止其他线程进入临界区,到达互斥访问的目的。

现在我们已经可以使用CAS操作来解决临界区的互斥访问的问题了,但是如果每次都这样写一遍实在太过麻烦,因此可以进行一些封装使得使用更加方便,也就是说...可以封装成自旋锁。我们可以用一个类来表示,将一个bool值作为类的数据成员,同时将CAS操作和赋值操作作为其成员函数,CAS操作其实就是加锁操作,而后面的赋值操作就是解锁操作。

三、用C++原子量实现

按照上面的思路,接下来用 C++ 11 引入标准库的原子量来实现一个自旋锁并且进行测试。

首先,我们需要一个bool值来表示锁的状态,这里直接使用标准库中的原子量 atomic<bool> (C++ 11的原子量可以参考:https://www.cnblogs.com/FateTHarlaown/p/8919235.html) ,在我的平台(Cygwin64、GCC7.3)上 atomic<bool> 的成员函数is_lock_free()返回值为true,是无锁的实现(如果内部使用了锁来实现的话那还叫什么自旋锁 = =)。实际上在大多数平台上 atomic<bool> 都是无锁的,如果不确定的话也可以使用C++标准规定必须为无锁实现的atomic_flag。

接下来,我们需要两个原子操作,CAS和赋值,C++11标准库在原子量的成员函数中直接提供了这两个操作。

//CAS
std::atomic::compare_exchange_weak( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst ), std::atomic::compare_exchange_strong( T& expected, T desired,
std::memory_order order =
std::memory_order_seq_cst )
//赋值
void store( T desired, std::memory_order order = std::memory_order_seq_cst )

compare_exchange_weak 与 compare_exchange_strong 主要的区别在于内存中的值与expected相等的时候,CAS操作是否一定能成功,compare_exchange_weak有概率会返回失败,而compare_exchange_strong则一定会成功。因此,compare_exchange_weak必须与循环搭配使用来保证在失败的时候重试CAS操作。得到的好处是在某些平台上compare_exchange_weak性能更好。按照上面的模型,我们本来就要和while搭配使用,可以使用compare_exchange_weak。最后内存序的选择没有特殊需求直接使用默认的std::memory_order_seq_cst。而赋值操作非常简单直接,这个调用一定会成功(只是赋值而已 = =),没有返回值。

实现代码非常短,下面是源代码:

#include <atomic>

class SpinLock {

public:
SpinLock() : flag_(false)
{} void lock()
{
bool expect = false;
while (!flag_.compare_exchange_weak(expect, true))
{
//这里一定要将expect复原,执行失败时expect结果是未定的
expect = false;
}
} void unlock()
{
flag_.store(false);
} private:
std::atomic<bool> flag_;
};

如上面所说,lock操作不停的尝试CAS操作直到成功为止,unlock操作则将bool标志位复原。使用方式如下:

SpinLock myLock;
myLock.lock(); //do something myLock.unlock();

接下来,我们进行正确性测试,以经典的i++ 问题为例:

#include <atomic>
#include <thread>
#include <vector> //自旋锁类定义
class SpinLock { public:
SpinLock() : flag_(false)
{} void lock()
{
bool expect = false;
while (!flag_.compare_exchange_weak(expect, true))
{
expect = false;
}
} void unlock()
{
flag_.store(false);
} private:
std::atomic<bool> flag_;
}; //每个线程自增次数
const int kIncNum = 1000000;
//线程数
const int kWorkerNum = 10;
//自增计数器
int count = 0;
//自旋锁
SpinLock spinLock;
//每个线程的工作函数
void IncCounter()
{
for (int i = 0; i < kIncNum; ++i)
{
spinLock.lock();
count++;
spinLock.unlock();
}
} int main()
{
std::vector<std::thread> workers;
std::cout << "SpinLock inc MyTest start" << std::endl;
count = 0; std::cout << "start " << kWorkerNum << " workers_" << "every worker inc " << kIncNum << std::endl;
std::cout << "count_: " << count << std::endl;
//创建10个工作线程进行自增操作
for (int i = 0; i < kWorkerNum; ++i)
workers.push_back(std::move(std::thread(IncCounter))); for (auto it = workers.begin(); it != workers.end(); it++)
it->join(); std::cout << "workers_ end" << std::endl;
std::cout << "count_: " << count << std::endl;
//验证结果
if (count == kIncNum * kWorkerNum)
{
std::cout << "SpinLock inc MyTest passed" << std::endl;
return true;
}
else
{
std::cout << "SpinLock inc MyTest failed" << std::endl;
return false;
} return 0;
}

上面的代码中创建了10个线程对共享的全局变量count分别进行一百万次++操作,然后验证结果是否正确,最终执行的输出为:

SpinLock inc MyTest start
start 10 workers_every worker inc 1000000
count_: 0
workers_ end
count_: 10000000
SpinLock inc MyTest passed

从结果中可以看出我们实现的自旋锁起到了保护临界区(这里就是i++ )的作用,count最后的值等于每个线程执行自增的数目之和。作为对比,可以去掉IncCounter中的加锁解锁操作:

void IncCounter()
{
for (int i = 0; i < kIncNum; ++i)
{
//spinLock.lock();
count++;
//spinLock.unlock();
}
}

执行后的输出为:

SpinLock inc MyTest start
start 10 workers_every worker inc 1000000
count_: 0
workers_ end
count_: 7254522
SpinLock inc MyTest failed

结果由于多个线程同时执行 i++ 造成结果错误。

到这里,我们就通过 C++ 11的原子量实现了一个简单的自旋锁。这里只是对C++原子量的一个小使用,无论是自旋锁本身还是原子量都还有许多值得探究的地方。

使用C++11原子量实现自旋锁的更多相关文章

  1. APUE学习笔记——11 线程同步、互斥锁、自旋锁、条件变量

    线程同步     同属于一个进程的不同线程是共享内存的,因而在执行过程中需要考虑数据的一致性.     假设:进程有一变量i=0,线程A执行i++,线程B执行i++,那么最终i的取值是多少呢?似乎一定 ...

  2. JUC(11)各种锁的理解(公平锁、可重入锁、自旋锁、死锁)

    文章目录 1.公平锁.非公平锁 2.可重入锁 3.自旋锁 4.死锁 1.公平锁.非公平锁 公平锁:非常公平.不能插队.必须先来后到 非公平锁:非常不公平.可以插队.(默认非公平) 可以修改为公平锁 2 ...

  3. Linux内核的同步机制---自旋锁

    自旋锁的思考:http://bbs.chinaunix.net/thread-2333160-1-1.html 近期在看宋宝华的<设备驱动开发具体解释>第二版.看到自旋锁的部分,有些疑惑. ...

  4. JVM中锁优化,偏向锁、自旋锁、锁消除、锁膨胀

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt364 本文将简单介绍HotSpot虚拟机中用到的锁优化技术. 自旋锁 互斥同 ...

  5. 转:自旋锁(spinlock)

    自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名. 由于 ...

  6. java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁(转载)

    之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...

  7. Windows和pthread中提供的自旋锁

    Windows和POSIX中都提供了自旋锁,我们也可以通过C++11的atomic来实现自旋锁.那么两者性能上面是什么关系?先引入实现代码: #ifndef __spinlock_h__ #defin ...

  8. Linux内核同步:自旋锁

    linux内核--自旋锁的理解 自旋锁:如果内核配置为SMP系统,自旋锁就按SMP系统上的要求来实现真正的自旋等待,但是对于UP系统,自旋锁仅做抢占和中断操作,没有实现真正的“自旋”.如果配置了CON ...

  9. Linux内核同步机制--自旋锁【转】

    本文转载自:http://www.cppblog.com/aaxron/archive/2013/04/12/199386.html 自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已 ...

随机推荐

  1. 024_STM32程序移植之_ESP8266_TCP

    (一)实验目的:编写电脑软件通过ESP8266传输数据给STM32的,下面这张图 (二)上面只是简单地图,视频比较全面 视频教程:https://v.qq.com/x/page/o0829zs7iop ...

  2. 五十五.ansible概述、ansible基础 、ad-hoc、批量配置管理

    1.环境准备 (自动化工具,批量操作) 6台 2cpu,1.5G以上内存,20G硬盘,1网卡 1.1 基础环境准备 1)启动6台虚拟机,ansible.sh   2)真机配置yum仓库 ]# tar ...

  3. D. AB-string ( 思维 )

    传送门 题意: 给你一个长度为n的字符串, 字符串只由 A B 组成. 问你这个字符串存在多少个 good string: ( 连续的一段子串 ) good string 的定义就是: 字符串中所有的 ...

  4. 在Android中使用OpenGL ES进行开发第(一)节:概念先行

    一.前期基础是知识储备笔者计划写三篇文章来详细分析OpenGL ES基础的同时也是入门关键的三个点: ①OpenGL ES是什么?与OpenGL的关系是什么?——概念部分 ②使用OpenGL ES绘制 ...

  5. HDOJ->考新郎(sdut1021)

    考新郎 Problem Description 在一场盛大的集体婚礼中,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的: 首先,给每 ...

  6. P2119 魔法阵

    原题链接  https://www.luogu.org/problemnew/show/P2119 YY同学今天上午给我们讲了这个题目,我觉得她的思路很好,特此写这篇博客整理一下. 50分:暴力枚举 ...

  7. 3-自定义构造方法和description方法

    http://www.cnblogs.com/mjios/archive/2013/04/19/3031412.html -自定义构造方法和description方法 1 默认的构造方法是什么?有什么 ...

  8. shell cat 用法

    cat命令的用途是连接文件或标准输入并打印. 1.命令格式:cat [选项] [文件]... 2.命令功能:cat主要有三大功能:1.一次显示整个文件:cat filename   --常用来显示文件 ...

  9. 01背包---P2392 kkksc03考前临时抱佛脚

    P2392 kkksc03考前临时抱佛脚 题解 01背包,类似于这道题,相似度99.999999%: 01-背包 P2663 越越的组队   一共有4科,每科的时间独立,然后每一科做一遍 P2663越 ...

  10. ndroid如何监听开机广播和关机广播

    需求描述:有些时候,我们需要我们的程序在开机后能自动运行,在系统即将关闭时,能写入一些记录到指定的文件里. 一.开机广播监听: Android系统启动完成后会发出启动完成广播(android.inte ...