luogu P4428 [BJOI2018]二进制
先考虑怎样的二进制串才会被3整除.可以发现如果二进制位第\(0,2,4...2n\)位如果为\(1\),那么在模3意义下为1,如果二进制位第\(1,3,5...2n+1\)位如果为\(1\),那么在模3意义下为-1.所以也就是位置上是1的奇二进制位个数减位置上是1的偶二进制位个数要被3整除
在这种条件下,如果区间内1的个数为偶数显然可以从最低位开始依次放使得被3整除,如果为奇数,那么先把除了最后三个1以外的1按照偶数的情况处理,然后这三个1中间各插入一个0,也就是\(...0101011...1\).那么,不合法的情况就只剩下有区间内奇数个1同时0的个数\(<2\),或者是区间内只有一个1
合法区间比较麻烦,改为求总区间个数-不合法区间个数.为了不算重,把不合法条件改为只剩下有区间内奇数个1同时0的个数\(<2\),或者是区间内只有一个1同时\(\ge 2\).我们用线段树维护这些区间个数,对每个节点记一个\(ls_{i,j}\)表示左端点为这个线段树节点对应区间左端点的区间中,1的个数奇偶性为\(0/1\),0的个数为\(0/1\)的区间个数,\(rs_{i,j}\)表示的是右端点为线段树节点右端点的相应的区间个数;\(lz_{i,j}\)表示左端点为线段树节点左端点的区间中,1的个数为\(0/1\),0的个数为\(0/1/\ge 2\)的区间个数,\(rz_{i,j}\)表示的是右端点为线段树节点右端点的相应的区间个数.以及分别记录区间\(0/1\)个数和不合法区间个数,每次合并两个节点,就计算跨越这两个节点的区间信息,可能需要一点点讨论,这里不再赘述
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct node
{
LL c0,c1,s;
LL ls[2][2],rs[2][2];
LL lz[2][3],rz[2][3];
void clr(){memset(ls,0,sizeof(ls)),memset(rs,0,sizeof(rs)),memset(lz,0,sizeof(lz)),memset(rz,0,sizeof(rz)),c0=c1=s=0;}
node(){}
node(int x)
{
memset(ls,0,sizeof(ls)),memset(rs,0,sizeof(rs)),memset(lz,0,sizeof(lz)),memset(rz,0,sizeof(rz)),c0=c1=s=0;
if(!x)
{
c0=1;
ls[0][1]=rs[0][1]=lz[0][1]=rz[0][1]=1;
}
else
{
s=c1=1;
ls[1][0]=rs[1][0]=lz[1][0]=rz[1][0]=1;
}
}
}s[N<<2],an;
node merg(node aa,node bb)
{
an.clr();
an.c0=aa.c0+bb.c0;
an.c1=aa.c1+bb.c1;
an.s=aa.s+bb.s;
for(int i=0;i<=1;++i)
for(int j=0;j<=1;++j)
{
an.ls[i][j]+=aa.ls[i][j];
an.rs[i][j]+=bb.rs[i][j];
if(aa.c0+j<=1) an.ls[(aa.c1&1)^i][aa.c0+j]+=bb.ls[i][j];
if(bb.c0+j<=1) an.rs[(bb.c1&1)^i][bb.c0+j]+=aa.rs[i][j];
}
for(int i=0;i<=1;++i)
for(int j=0;j<=1;++j)
for(int k=0;k<=1;++k)
for(int l=0;l<=1;++l)
if((i^k)==1&&j+l<=1) an.s+=aa.rs[i][j]*bb.ls[k][l];
for(int i=0;i<=1;++i)
for(int j=0;j<=2;++j)
{
an.lz[i][j]+=aa.lz[i][j];
an.rz[i][j]+=bb.rz[i][j];
if(aa.c1+i<=1) an.lz[aa.c1+i][min(aa.c0+j,2ll)]+=bb.lz[i][j];
if(bb.c1+i<=1) an.rz[bb.c1+i][min(bb.c0+j,2ll)]+=aa.rz[i][j];
}
for(int i=0;i<=1;++i)
for(int j=0;j<=2;++j)
for(int k=0;k<=1;++k)
for(int l=0;l<=2;++l)
if(i+k==1&&j+l>=2) an.s+=aa.rz[i][j]*bb.lz[k][l];
return an;
}
int n,a[N];
void psup(int o){s[o]=merg(s[o<<1],s[o<<1|1]);}
void modif(int o,int l,int r,int lx)
{
if(l==r){a[l]^=1;s[o]=node(a[l]);return;}
int mid=(l+r)>>1;
if(lx<=mid) modif(o<<1,l,mid,lx);
else modif(o<<1|1,mid+1,r,lx);
psup(o);
}
node quer(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return s[o];
int mid=(l+r)>>1;
if(rr<=mid) return quer(o<<1,l,mid,ll,rr);
if(ll>mid) return quer(o<<1|1,mid+1,r,ll,rr);
return merg(quer(o<<1,l,mid,ll,mid),quer(o<<1|1,mid+1,r,mid+1,rr));
}
void bui(int o,int l,int r)
{
if(l==r){s[o]=node(a[l]);return;}
int mid=(l+r)>>1;
bui(o<<1,l,mid),bui(o<<1|1,mid+1,r);
psup(o);
}
int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
bui(1,1,n);
int q=rd();
while(q--)
{
int op=rd();
if(op==1) modif(1,1,n,rd());
else
{
int l=rd(),r=rd();
printf("%lld\n",1ll*(r-l+1)*(r-l+2)/2-quer(1,1,n,l,r).s);
}
}
return 0;
}
luogu P4428 [BJOI2018]二进制的更多相关文章
- Bzoj5294/洛谷P4428 [Bjoi2018]二进制(线段树)
题面 Bzoj 洛谷 题解 考虑一个什么样的区间满足重组之后可以变成\(3\)的倍数.不妨设\(tot\)为一个区间内\(1\)的个数.如果\(tot\)是个偶数,则这个区间一定是\(3\)的倍数,接 ...
- 【BZOJ5294】[BJOI2018]二进制(线段树)
[BZOJ5294][BJOI2018]二进制(线段树) 题面 BZOJ 洛谷 题解 二进制串在模\(3\)意义下,每一位代表的余数显然是\(121212\)这样子交替出现的. 其实换种方法看,就是\ ...
- 2019.02.12 bzoj5294: [Bjoi2018]二进制(线段树)
传送门 题意简述: 给出一个长度为nnn的二进制串. 你需要支持如下操作: 修改每个位置:1变0,0变1 询问对于一个区间的子二进制串有多少满足重排之后转回十进制值为333的倍数(允许前导000). ...
- bzoj 5294: [Bjoi2018]二进制
Description pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是333 的倍数.他想研究对于二进 制,是否也有类似的性质.于是他生成了一个长为n 的二进制串,希望 ...
- Luogu P4932 浏览器(二进制)
P4932 浏览器 题意 题目背景 __stdcall在用\(Edge\)玩\(slay\)的时候,鼠标会经常失灵,这让她十分痛苦,因此她决定也要让你们感受一下\(Edge\)制造的痛苦. 题目描述 ...
- BZOJ5294 BJOI2018 二进制 线段树
传送门 因为每一位\(\mod 3\)的值为\(1,2,1,2,...\),也就相当于\(1,-1,1,-1,...\) 所以当某个区间的\(1\)的个数为偶数的时候,一定是可行的,只要把这若干个\( ...
- [Bjoi2018]二进制
题解: 首先发现性质 只有1个1的区间 或者 奇数个1且0的个数少于2这个区间是不合法的 然后这个东西暴力是比较好处理的 刚开始写的比较傻逼,分几种情况 先把0,1缩在一起 1.k1个0+1+k2个0 ...
- Luogu P4427 [BJOI2018]求和
这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...
- BZOJ5294 [BJOI2018] 二进制 【线段树】
BJOI的题目感觉有点难写 题目分析: 首先推一波结论.接下来的一切都在模3意义下 现在我们将二进制位重组,不难发现的是2^0≡1,2^1≡2,2^2≡1,2^3≡2....所以我们考虑这样的式子 2 ...
随机推荐
- 【SR汇总】算法时间效率
1.SRCNN-0.39s SRCNN处理速度. 论文:Learning a Deep Convolutional Network forImage Super-Resolution 中,4.2节. ...
- [go]redis基本使用
redis 数据结构操作 import ( "github.com/garyburd/redigo/redis" ) // set c, err := redis.Dial(&qu ...
- AES对称加密解密类
import java.io.UnsupportedEncodingException; import javax.crypto.Cipher; import javax.crypto.spec.Se ...
- [Kerberos] Kerberos教程(二)
4 Kerberos操作 最后,在获得前面段落中描述的概念后,可以讨论Kerberos如何运作.我们将通过列出和描述在身份验证期间在客户端和KDC之间以及客户端和应用程序服务器之间的每个数据包来执行此 ...
- TypeError: '<' not supported between instances of 'str' and 'int'
<不支持str实例和int实例之间的对比 birth是str类型 2000是int类型 所以无法对比,报错 birth = input('birth: ') if birth < 2000 ...
- JAVA中注解的实现原理
注解的本质 「java.lang.annotation.Annotation」接口中有这么一句话,用来描述『注解』. The common interface extended by all anno ...
- 如何写resultful接口
一.协议 API与客户端用户的通信协议,总是使用HTTPS协议,以确保交互数据的传输安全. 二.域名 应该尽量将API部署在专用域名之下: https://api.example.com 如果确定AP ...
- mysql安装报错error: Header V3 DSA signature: BAD, key ID
CentOS安装rpm安装MySQL时爆出警告: warning: mysql-community-server-5.7.18-1.el6.x86_64.rpm: Header V3 DSA/SHA1 ...
- Python list、tuple、dict区别
Dictionary 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系. 每一个元素都是一个 key-value 对, 整个元素集合用大括号括起来 您可以通过 key 来引用其值 ...
- ParallelForTransform作业
ParallelForTransform作业是另一种ParallelFor作业 ; 专为在变形上操作而设计. 注意:ParallelForTransform作业是Unity中用于实现IJobParal ...