题意:

两个串,s  t,求s的所有子串中大于 t  的数目

题解:

  dp[i][j] 表示 s的前i个,匹配 t 的前 j 个的种类数,
  那么 if(s[i] == t[j])
      dp[i][j] = dp[i -1][j] + dp[i - 1][j - 1];
    else
      dp[i][j] = dp[i - 1][j]; 
  对于长度大于 t 的没有前导0的都符合,那么就看长度等于t的就可以了,
  当匹配到 i, j 的时候,if(s[i] > t[j]) 那么该贡献为:
    前面匹配j-1的种类数*后面随便选len2-j个,即当前的贡献就为dp[i - 1][j - 1] * C[len1 - i][len2 - j]。
 

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = ;
const ll mod = ;
char s[N],t[N];
ll C[N][N];
ll dp[N][N];
int main()
{
//打表杨辉三角
C[][] = ;
C[][] = C[][] = ;
for(int i=;i<=;i++){
C[i][] = ;
for(int j=;j<=i;j++){
C[i][j] = C[i-][j-] + C[i-][j] ;
if(C[i][j]>=mod) C[i][j] -= mod ;
}
} int T,n,m;
for( scanf("%d",&T) ; T ; T-- ){
scanf("%d%d",&n,&m);
scanf("%s%s",s+,t+); for(int i=;i<=n;i++){
dp[i][] = ;
}
//计算长度相同时,某一位置比t的位置大,对答案的贡献
ll ans = ;
for(int i=;i<=n;i++){
for(int j=;j<=min(i,m);j++){
dp[i][j] = dp[i-][j] ;
if( s[i] == t[j] ){
dp[i][j] = (dp[i][j] + dp[i-][j-]) % mod ;
}
else if( s[i] > t[j] ){
ans = (ans + (ll)dp[i-][j-] * C[n-i][m-j]) %mod ;
}
}
}
//计算长度大于t串长度时,对答案的贡献
for(int i=;i<=n;i++){
if( s[i] =='' ) continue ;
for(int j=m;j<=n-i;j++){
ans = (ans + C[n-i][j])%mod ;
}
}
printf("%lld\n",ans);
}
return ;
}
 
 
 

【动态规划】subsequence 1的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. hdu 1159:Common Subsequence(动态规划)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  3. 动态规划 Common Subsequence

    描述 A subsequence of a given sequence is the given sequence with some elements (possible none) left o ...

  4. PAT A1007 Maximum Subsequence Sum (25 分)——最大子列和,动态规划

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  5. HDU 1159 Common Subsequence 动态规划

    2017-08-06 15:41:04 writer:pprp 刚开始学dp,集训的讲的很难,但是还是得自己看,从简单到难,慢慢来(如果哪里有错误欢迎各位大佬指正) 题意如下: 给两个字符串,找到其中 ...

  6. python编写PAT 1007 Maximum Subsequence Sum(暴力 分治法 动态规划)

    python编写PAT甲级 1007 Maximum Subsequence Sum wenzongxiao1996 2019.4.3 题目 Given a sequence of K integer ...

  7. Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence)

    Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列. 你可以认为 s 和 t 中仅包含英文小写字母. ...

  8. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. hdu1159Common Subsequence——动态规划(最长公共子序列(LCS))

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  10. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

随机推荐

  1. sprintf简介

    sprintf 基本用法 输入一段有特点的字符串 #include <cstdio> #include <cstring> using namespace std; int m ...

  2. 7. 使用Hystrix实现微服务的容错处理

                  使用Hystrix实现微服务的容错处理 7.1. 实现容错的手段 7.1.1. 雪崩效应 在微服务架构中通常会有多个服务层调用,基础服务的故障可能会导致级联故障,进而造成整 ...

  3. MongoDB系列二:MongoDB安装过程

    一.MongoDB安装,以Linux系统安装为例:(下载:www.mongodb.org 注意使用stable版本) 1.下载最新版本的MongoDB安装包,wget http://fastdl.mo ...

  4. js怎么动态加载js文件(JavaScript性能优化篇)

    下面介绍一种JS代码优化的一个小技巧,通过动态加载引入js外部文件来提高网页加载速度 [基本优化] 将所有需要的<script>标签都放在</body>之前,确保脚本执行之前完 ...

  5. CentOS7设置开机启动方式(图形界面/命令行界面)

    CentOS 7由于使用systemd而不是init,所以不能通过修改inittab文件来修改开机启动模式. 先使用ctrl+alt+f2切换到命令行模式,然后输入命令:systemctl set-d ...

  6. 使用pyinstaller 打包python程序

    1.打开PyCharm的Terminal,使用命令pip install pyinstaller安装pyinstaller 2.打包命令:pyinstaller --console --onefile ...

  7. SpringCloud(四)之Netflix开源组件断路器Hystrix介绍

    一.前言? 1.Netflix Hystrix断路器是什么? Netflix Hystrix是SOA/微服务架构中提供服务隔离.熔断.降级机制的工具/框架.Netflix Hystrix是断路器的一种 ...

  8. <application>节点属性

    1.android:allowBackup 它表示是否允许应用程序参与备份.如果将该属性设置为false,则即使备份整个系统,也不会执行这个应用程序的备份操作,而整个系统备份能导致所有应用程序数据通过 ...

  9. 数据分析 - pandas 模块

    数据读取结构 -  DataFrame Series (collection of values) DataFrame (collection of Series objects) Panel (co ...

  10. Docker Registry使用记录

    一.介绍 有时我们的服务器无法访问互联网,或者你不希望将自己的镜像放到公网当中,那么你就需要Docker Registry,它可以用来存储和管理自己的镜像,即私有镜像库. 二.使用 2.1 获取最新镜 ...