Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

实现:

class Solution {

public:

    int minimumTotal(vector<vector<int>>& triangle) {

        int n = triangle.size();

        for (int i=n-2; i >=0; i--) {

            for (int j = 0; j < triangle[i].size(); j++) {

                triangle[i][j] += triangle[i+1][j] < triangle[i+1][j+1] ? triangle[i+1][j] : triangle[i+1][j+1];

            } 

        }

        return triangle[0][0];

    }

};

LeetCode120——Triangle的更多相关文章

  1. Leetcode120.Triangle三角形最小路径和

    给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11 ...

  2. LeetCode120 Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  3. [Swift]LeetCode120. 三角形最小路径和 | Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  4. [LeetCode] Triangle 三角形

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  5. [LeetCode] Pascal's Triangle II 杨辉三角之二

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  6. [LeetCode] Pascal's Triangle 杨辉三角

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  7. 【leetcode】Pascal's Triangle II

    题目简述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Retur ...

  8. 【leetcode】Pascal's Triangle

    题目简述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. HDU-1534 Schedule Problem

    四种约束条件..照做就行了.. 最长路建图. #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  2. java面试题之如何中断一个线程?

    方法一:调用interrupt方法,通知线程应该中断了: A.如果线程处于被阻塞状态,那么线程将立即退出被阻塞状态,并抛出了一个InterruptedException异常. B.如果线程处于正常活动 ...

  3. java面试题之BeanFactory和FactoryBean的区别

    BeanFactory是个Factory,也就是IOC容器或对象工厂:FactoryBean是个Bean.在Spring中,所有的Bean都是由BeanFactory(也就是IOC容器)来进行管理的. ...

  4. Linux rpm 命令参数使用

    RPM是RedHat Package Manager(RedHat软件包管理工具)类似Windows里面的“添加/删除程序” rpm 执行安装包二进制包(Binary)以及源代码包(Source)两种 ...

  5. C语言第五题

    学生成绩管理系统 一.登录页面分为:首页展示学生登录和老师登录让用户选择,选择完以后提示用户输入账户名和密码 ps:1.老师的账户目前就一个,账户密码可以设置成admin/admin 2.学生的账户是 ...

  6. 【Hihocoder1636】Pangu and Stones(区间DP)

    题意:N堆石子,每次可以合并连续的长度从L到R的若干堆石子为1堆,费用为选择的石子总个数,求将N堆合并成1堆的最小总花费,无解输出0 思路:dp[i][j][k]表示将i到j这段区间合并为k堆的最小代 ...

  7. touch上滑加载

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. CodeForces 424D: ...(二分)

    题意:给出一个n*m的矩阵,内有一些数字.当你从一个方格走到另一个方格时,按这两个方格数字的大小,有(升,平,降)三种费用.你需要在矩阵中找到边长大于2的一个矩形,使得按这个矩形顺时针行走一圈的费用, ...

  9. hdu 1254(搜索题)

    推箱子 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  10. hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...