题目链接

BZOJ4000

题解

注意题目中的编号均从\(0\)开始= =

\(m\)特别小,考虑状压

设\(f[i][s]\)为第\(i\)行为\(s\)的方案数

每个棋子能攻击的只有本行,上一行,下一行,

我们能迅速找出哪些状态是合法的,以及每个状态所对应的上一行攻击位置的并和下一行攻击位置的并

如果两个状态上下相互攻击不到,就是合法的转移

我们弄一个\(2^m * 2^m\)的转移矩阵,就可以矩阵优化了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define uint unsigned int
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 65,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int s1,s2,s3,n,m,p,k;
struct Matrix{
uint s[maxn][maxn]; int n,m;
Matrix(){memset(s,0,sizeof(s)); n = m = 0;}
}A,F,Fn;
inline Matrix operator *(const Matrix& a,const Matrix& b){
Matrix c;
if (a.m != b.n) return c;
c.n = a.n; c.m = b.m;
for (int i = 0; i < c.n; i++)
for (int j = 0; j < c.m; j++)
for (int k = 0; k < a.m; k++)
c.s[i][j] += a.s[i][k] * b.s[k][j];
return c;
}
inline Matrix qpow(Matrix a,int b){
Matrix ans; ans.n = ans.m = a.n;
for (int i = 0; i < ans.n; i++) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int f[maxn];
bool check(int s){
for (int i = 0; i < m; i++){
if (s & (1 << i)){
if (i + 1 >= p - k){
if (s & (s2 << (i + 1 - (p - k)))) return false;
}
else if (s & (s2 >> ((p - k) - i - 1))) return false;
}
}
return true;
}
int getu(int s){
int re = 0;
for (int i = 0; i < m; i++){
if (s & (1 << i)){
if (i + 1 >= p - k) re |= s1 << (i + 1 - (p - k));
else re |= s1 >> ((p - k) - i - 1);
}
}
return re;
}
int getd(int s){
int re = 0;
for (int i = 0; i < m; i++){
if (s & (1 << i)){
if (i + 1 >= p - k) re |= s3 << (i + 1 - (p - k));
else re |= s3 >> ((p - k) - i - 1);
}
}
return re;
}
void print(int x){
for (int i = 4; i >= 0; i--)
printf("%d",(x & (1 << i)) != 0);
}
int main(){
n = read(); m = read();
p = read(); k = read();
REP(i,p) s1 = (s1 << 1) + read();
REP(i,p){
if (i == k + 1) s2 <<= 1,read();
else s2 = (s2 << 1) + read();
}
REP(i,p) s3 = (s3 << 1) + read();
int N = 1 << m;
F.n = N; F.m = 1;
for (int s = 0; s < N; s++)
if (check(s)) F.s[s][0] = 1;
A.n = A.m = N;
for (int s = 0; s < N; s++){
if (!check(s)) continue;
for (int e = 0; e < N; e++){
if (!check(e)) continue;
int u = getu(s),d = getd(e);
if (!(s & d) && !(e & u))
A.s[s][e] = 1;
}
}
Fn = qpow(A,n - 1) * F;
uint ans = 0;
for (int i = 0; i < N; i++) ans += Fn.s[i][0];
cout << ans << endl;
return 0;
}

BZOJ4000 [TJOI2015]棋盘 【状压dp + 矩阵优化】的更多相关文章

  1. [BZOJ4000][TJOI2015]棋盘(状压DP+矩阵快速幂)

    题意极其有毒,注意给的行列都是从0开始的. 状压DP,f[i][S]表示第i行状态为S的方案数,枚举上一行的状态转移.$O(n2^{2m})$ 使用矩阵加速,先构造矩阵a[S1][S2]表示上一行为S ...

  2. BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

    状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...

  3. Codeforces 917C - Pollywog(状压 dp+矩阵优化)

    UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...

  4. 【BZOJ4000】【LOJ2104】【TJOI2015】棋盘 (状压dp + 矩阵快速幂)

    Description ​ 有一个\(~n~\)行\(~m~\)列的棋盘,棋盘上可以放很多棋子,每个棋子的攻击范围有\(~3~\)行\(~p~\)列.用一个\(~3 \times p~\)的矩阵给出了 ...

  5. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  6. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  7. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  8. 【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个 ...

  9. 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT

    题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...

随机推荐

  1. 2018.6.19 Java核心API与高级编程实践复习总结

    Java 核心编程API与高级编程实践 第一章 异常 1.1 异常概述 在程序运行中,经常会出现一些意外情况,这些意外会导致程序出错或者崩溃而影响程序的正常执行,在java语言中,将这些程序意外称为异 ...

  2. SpringBoot学习记录(一)

    一.SpringBoot入门 1.SpringBoot简介 简化Spring应用开发的一个框架:整个Spring技术栈的一个大整合:J2EE开发的一站式解决方案: SpringBoot的优点: (1) ...

  3. 1px移动端显示问题

    设计图上的标注要有1px的线条,css本来以为直接写个1px就能万事大吉了,手机上怎么看都很粗. 至于具体为什么会这样,百度看了一圈,有点懵懵懂懂,大概就是物理分辨率高于实际网页的像素分辨率的原因吧. ...

  4. 09.VUE学习之watch监听属性变化实现类百度搜索栏功能ajax异步请求数据,返回字符串

    cmd下安装axios npm install axios 安装好后,会多出node_modules文件夹 思路: 监听data里的word改变时,发送ajax异步请求数据, 把返回的数据赋值给dat ...

  5. awk速查手册

    简介awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进 ...

  6. 2017 United Kingdom and Ireland Programming(Gym - 101606)

    题目很水.睡过了迟到了一个小时,到达战场一看,俩队友AC五个了.. 就只贴我补的几个吧. B - Breaking Biscuits Gym - 101606B 旋转卡壳模板题.然后敲错了. 代码是另 ...

  7. [BZOJ3312][USACO]不找零(状压DP)

    Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上 ...

  8. poj 3273 分期问题 最大化最小值

    题意:将N个账款分给城M个财务期,使得每个分期账款和的值最大? 思路: 每次mid为分期账款 如果分期次数小于m说明mid太大,减上限  反正 增下限 开始下限设为 最大值 上限设为和 解决问题的代码 ...

  9. Kubernetes master服务定制编译docker镜像

    前言 之前部署了Kubernetes 1.13.0,发现master服务的启动方式与1.10.4版本有所区别,kube-apiserver.kube-controller-manager和kube-s ...

  10. 《鸟哥的Linux私房菜》学习笔记(8)——bash脚本编程之变量

    一.变量命名                                                             1.只能包含字母.数字和下划线,并且不能以数字开头,    2.不 ...