scikit-learn:4. 数据集预处理(clean数据、reduce降维、expand增维、generate特征提取)
本文參考:http://scikit-learn.org/stable/data_transforms.html
本篇主要讲数据预处理,包含四部分:
数据清洗、数据降维(PCA类)、数据增维(Kernel类)、提取自己定义特征。
哇哈哈。还是关注预处理比較靠谱。
。。
。
重要的不翻译:scikit-learn providesa library of transformers, which mayclean (see Preprocessing
data), reduce (seeUnsupervised
dimensionality reduction), expand (see Kernel
Approximation) or generate (see Feature
extraction) feature representations.
fit、transform、fit_transform三者差别:
fit:从训练集中学习模型的參数(比如,方差、中位数等;也可能是不同的词汇表)
transform:将训练集/測试集中的数据转换为fit学到的參数的维度上(測试集的方差、中位数等;測试集在fit得到的词汇表下的向量值等)。
fit_transform:同一时候进行fit和transform操作。
Like
other estimators, these are represented by classes with fit method,
which learns model parameters (e.g. mean and standard deviation for normalization) from a training set, and a transform method
which applies this transformation model to unseen data. fit_transform may
be more convenient and efficient for modelling and transforming the training data simultaneously.
八大块内容。翻译会在之后慢慢更新:
4.1.
Pipeline and FeatureUnion: combining estimators
4.1.1.
Pipeline: chaining estimators
4.1.2.
FeatureUnion: composite feature spaces
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/46991465
4.2.3.
Text feature extraction
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/46997379
4.2.4.
Image feature extraction
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/46992105
翻译之后的文章。參考:http://blog.csdn.net/mmc2015/article/details/47016313
4.3.1.
Standardization, or mean removal and variance scaling
4.3.4.
Encoding categorical features
4.3.5.
Imputation of missing values
4.4.
Unsupervised dimensionality reduction
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/47066239
4.4.1.
PCA: principal component analysis
4.4.3.
Feature agglomeration (特征聚集)
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/47067003
4.5.1.
The Johnson-Lindenstrauss lemma
4.5.2.
Gaussian random projection
4.5.3.
Sparse random projection
翻译之后的文章,參考:http://blog.csdn.net/mmc2015/article/details/47068223
4.6.1.
Nystroem Method for Kernel Approximation
4.6.2.
Radial Basis Function Kernel
4.6.3.
Additive Chi Squared Kernel
4.6.4.
Skewed Chi Squared Kernel
4.7.
Pairwise metrics, Affinities and Kernels
翻译之后的文章。參考:http://blog.csdn.net/mmc2015/article/details/47068895
4.8.
Transforming the prediction target (y)
翻译之后的文章。參考:http://blog.csdn.net/mmc2015/article/details/47069869
scikit-learn:4. 数据集预处理(clean数据、reduce降维、expand增维、generate特征提取)的更多相关文章
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- WCF分布式开发步步为赢(8):使用数据集(DataSet)、数据表(DataTable)、集合(Collection)传递数据
数据集(DataSet).数据表(DataTable).集合(Collection)概念是.NET FrameWork里提供数据类型,在应用程序编程过程中会经常使用其来作为数据的载体,属于ADO.NE ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 大数据学习day39----数据仓库02------1. log4j 2. 父子maven工程(子spring项目的创建)3.项目开发(埋点日志预处理-json数据解析、清洗过滤、数据集成实现、uid回补)
1. log4j(具体见log4j文档) log4j是一个java系统中用于输出日志信息的工具.log4j可以将日志定义成多种级别:ERROR / WARN / INFO / DEBUG ...
- Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE > ...
- Deep learning:三十四(用NN实现数据的降维)
数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of d ...
随机推荐
- /* Dr黄的技术博客开通啦 */
以前懒得写技术日志, 现在终于发现重要性.. mark一下这个里程碑.
- asp.net core 2.1 将控制器抽离到类库中
startup.cs的ConfigureServices中添加: public void ConfigureServices(IServiceCollection services) { var ma ...
- Linked List Cycle - LeetCode
Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it without using ext ...
- POJ 2486 Apple Tree [树状DP]
题目:一棵树,每个结点上都有一些苹果,且相邻两个结点间的距离为1.一个人从根节点(编号为1)开始走,一共可以走k步,问最多可以吃多少苹果. 思路:这里给出数组的定义: dp[0][x][j] 为从结点 ...
- python GIL
https://www.cnblogs.com/MnCu8261/p/6357633.html 全局解释器锁,同一时间只有一个线程获得GIL,
- MFC中 获取新输入编辑框的内容
//得到原始内容的长度 int len = m_editPoemFileStr.GetLength(); UpdateData(true); //得到新增加的内容 CString sNewStrin ...
- Hadoop之Linux源代码编译
Hadoop开篇,按惯例.先编译源代码.导入到Eclipse.这样以后要了解那块,或者那块出问题了.直接找源代码. 编译hadoop2.4.1源代码之前.必须安装Maven和Ant环境,而且Hadoo ...
- 深入Java----集合----BitSet
BitSet类 大小可动态改变, 取值为true或false的位集合.用于表示一组布尔标志. java中有三种移位运算符 << : 左移运算符,num <&l ...
- [Django]中建立数据库视图
Django中建立数据库视图 Django中没有建立视图的接口.假设要建立一个视图须要一些手动的改变. 这里使用的Django 版本号>1.5, 使用的数据库为mysql 第一步 建立视图,比如 ...
- JDK8 下载地址 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
JDK8 下载地址 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 安装时最好在 ...