题目大意

给定\(S(n,m)\)表示第二类斯特林数,定义函数\(f(n)\)

\[f(n) = \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)
\]

给定正整数\(n,(n\leq 10^5)\),求\(f(n)\)

题解

我们都知道第二类斯特林数的递推公式为

\[S(i,j) = S(i-1,j-1) + j*S(i-1,j),(1 \leq j \leq i-1)
\]

且有边界\(S(i,i) = 1(0 \leq i),S(i,0) = 0(1 \leq i)\)

第二类斯特林数\(S(i,j)\)的含义是把\(i\)个元素划分成\(j\)个无序的集合的方案

假设允许空集合的存在的话,方案即为\(m^n\)

我们应用容斥原理,枚举至少有多少空集合空集合,那么有

\[S(n,m) = \frac{1}{m!}\sum_{k=1}^{m}C_m^k(m-k)^n(-1)^k
\]

设\(g(n) = \sum_{i=0}^nS(n,i)2^i(i!)\)

那么我们将\(S(n,m)\)代入\(g(n)\)化简得

\[g(n) = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

那么将\(g(n)\)带入答案表达式中,有

\[ans = \sum_{n=0}^x\sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

这时我们发现每次最外层的\(n -> (n+1)\)时,都相当于在内部的\(\frac{(m-k)^n}{(m-k)!}\)一项上又加上了一个\(\frac{(m-k)^{n+1}}{(m-k)!}\)

所以我们把这一项做等比数列求和.

设\(g(x) = \frac{x^{n+1} - x}{(x-1)(x!)}\)

那么上式变成了

\[ans = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)
\]

于是我们在\(\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)\)进行FFT计算卷积

这样就只剩下了一个sigma式,for循环一边即可.

复杂度\(O(nlogn)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 600010;
const int mod = 998244353;
const int pri_rt = 3;
int w[maxn];
inline int qpow(int x,int p){
int ret = 1;
for(;p;p>>=1,x=1LL*x*x%mod) if(p&1) ret=1LL*ret*x % mod;
return ret;
}
inline void FNT(int *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j)<j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
int k = m>>1;
int wn = qpow(pri_rt,p == 1 ? (mod-1)/m : (mod-1) - (mod-1)/m);
for(int i=1;i<k;++i) w[i] = 1LL*w[i-1]*wn % mod;
w[0] = 1;
for(int i=0;i<n;i+=m){
for(int j=0;j<k;++j){
int u = 1LL*x[i+j+k]*w[j] % mod;
x[i+j+k] = x[i+j] - u;
if(x[i+j+k] < 0) x[i+j+k] += mod;
x[i+j] += u;
if(x[i+j] >= mod) x[i+j] -= mod;
}
}
}
if(p == -1){
int inv = qpow(n,mod-2);
for(int i=0;i<n;++i) x[i] = 1LL*x[i]*inv % mod;
}
}
int fac[maxn],inv[maxn];
inline void init(int n){
fac[0] = 1;
for(int i=1;i<=n;++i) fac[i] = 1LL*fac[i-1]*i % mod;
inv[n] = qpow(fac[n],mod-2);
for(int i = n-1;i>=0;--i) inv[i] = 1LL*inv[i+1]*(i+1) % mod;
}
int A[maxn],B[maxn];
int main(){
int n;read(n);
int len;for(len=1;len <= (n+1);len<<=1);len<<=1;
init(n);
for(int i=0;i<=n;++i){
if(i&1) A[i] = -inv[i] + mod;
else A[i] = inv[i];
}
for(int i=2;i<=n;++i){
B[i] = qpow(i,n+1) - i + mod;
if(B[i] < 0) B[i] += mod;
B[i] = (1LL*B[i]*qpow(i-1,mod-2)%mod*inv[i]) % mod;
}B[1] = n;
FNT(A,len,1);FNT(B,len,1);
for(int i=0;i<len;++i) A[i] = 1LL*A[i]*B[i] % mod;
FNT(A,len,-1);
int ans = 1;
for(int i=1,f2=2;i<=n;++i){
ans = (ans + 1LL*A[i]*f2%mod*fac[i]) % mod;
f2 = (f2<<1) % mod;
}printf("%d\n",ans);
getchar();getchar();
return 0;
}

bzoj4555: 求和sum 快速傅立叶变换的更多相关文章

  1. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  2. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  3. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  4. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  7. NVIDIA GPU的快速傅立叶变换

    NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理, ...

  8. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

  9. [快速傅立叶变换&快速傅里叶变换]【旧 手写笔记】

    $FFT$好美啊 参考资料: 1.算法导论 2.Miskcoo 3.Menci 4.虚数的意义-阮一峰 简单说一下,具体在下面的图片 实现: 可以用$complex$也可以手写 和计算几何差不多 注意 ...

随机推荐

  1. CentOS 6.5语言包裁剪

    https://www.ibm.com/developerworks/cn/linux/l-cn-linuxglb/ 浅析 Linux 的国际化与本地化机制 Linux 是一个国际化的操作系统,它的工 ...

  2. 开发ActiveX控件调用另一个ActiveX系列1——开发一个MFC ActiveX控件

    ActiveX开发的教程有很多,我也从中受益匪浅,例如以下这几篇: 基本教程:http://www.cnblogs.com/guenli/articles/1629915.html 注意事项:http ...

  3. NUTCH2.3 hadoop2.7.1 hbase1.0.1.1 solr5.2.1部署(二)

     Precondition: hadoop 2.7.1 hbase 1.0.1.1 / hbase 0.98.13 192.168.1.106 ->master 192.168.1.105 ...

  4. 【Android】百度地图自定义弹出窗口

    我们使用百度地图的时候,点击地图上的Marker,会弹出一个该地点详细信息的窗口,如下左图所示,有时候,我们希望自己定义这个弹出窗口的内容,或者,干脆用自己的数据来构造这样的弹出窗口,但是,在百度地图 ...

  5. Android-Android进程间通讯之messenger

    转自‘https://www.cnblogs.com/makaruila/p/4869912.html 平时一说进程间通讯,大家都会想到AIDL,其实messenger和AIDL作用一样,都可以进行进 ...

  6. Codeforces 390E Inna and Large Sweet Matrix 树状数组改段求段

    题目链接:点击打开链接 题意:给定n*m的二维平面 w个操作 int mp[n][m] = { 0 }; 1.0 (x1,y1) (x2,y2) value for i : x1 to x2 for ...

  7. gulp的使用方法

    ---恢复内容开始--- 什么是gulp? Gulp.js是一个自动化构建工具,开发者可以使用它在项目开发过程中自动执行常见任务. 使用步骤: 1.全局安装gulp:    npm install - ...

  8. VI带行号查看

        :set nu         带行号查看,并不改变文件内容 :set nonu     取消带行号查看 在每个用户的主目录下,都有一个 vi 的配置文件".vimrc"或 ...

  9. WebApi 传参详解(转)

    一.无参数Get请求 一般的get请求我们可以使用jquery提供的$.get() 或者$.ajax({type:"get"}) 来实现: 请求的后台Action方法仍为上篇文章中 ...

  10. sqlite与sqlserver区别

    1.查询时把两个字段拼接在一起 --sqlserver-- select Filed1+'@'+Filed2 from table --sqlite-- select Filed1||'@'||Fil ...