题目大意

给定\(S(n,m)\)表示第二类斯特林数,定义函数\(f(n)\)

\[f(n) = \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)
\]

给定正整数\(n,(n\leq 10^5)\),求\(f(n)\)

题解

我们都知道第二类斯特林数的递推公式为

\[S(i,j) = S(i-1,j-1) + j*S(i-1,j),(1 \leq j \leq i-1)
\]

且有边界\(S(i,i) = 1(0 \leq i),S(i,0) = 0(1 \leq i)\)

第二类斯特林数\(S(i,j)\)的含义是把\(i\)个元素划分成\(j\)个无序的集合的方案

假设允许空集合的存在的话,方案即为\(m^n\)

我们应用容斥原理,枚举至少有多少空集合空集合,那么有

\[S(n,m) = \frac{1}{m!}\sum_{k=1}^{m}C_m^k(m-k)^n(-1)^k
\]

设\(g(n) = \sum_{i=0}^nS(n,i)2^i(i!)\)

那么我们将\(S(n,m)\)代入\(g(n)\)化简得

\[g(n) = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

那么将\(g(n)\)带入答案表达式中,有

\[ans = \sum_{n=0}^x\sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

这时我们发现每次最外层的\(n -> (n+1)\)时,都相当于在内部的\(\frac{(m-k)^n}{(m-k)!}\)一项上又加上了一个\(\frac{(m-k)^{n+1}}{(m-k)!}\)

所以我们把这一项做等比数列求和.

设\(g(x) = \frac{x^{n+1} - x}{(x-1)(x!)}\)

那么上式变成了

\[ans = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)
\]

于是我们在\(\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)\)进行FFT计算卷积

这样就只剩下了一个sigma式,for循环一边即可.

复杂度\(O(nlogn)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 600010;
const int mod = 998244353;
const int pri_rt = 3;
int w[maxn];
inline int qpow(int x,int p){
int ret = 1;
for(;p;p>>=1,x=1LL*x*x%mod) if(p&1) ret=1LL*ret*x % mod;
return ret;
}
inline void FNT(int *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j)<j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
int k = m>>1;
int wn = qpow(pri_rt,p == 1 ? (mod-1)/m : (mod-1) - (mod-1)/m);
for(int i=1;i<k;++i) w[i] = 1LL*w[i-1]*wn % mod;
w[0] = 1;
for(int i=0;i<n;i+=m){
for(int j=0;j<k;++j){
int u = 1LL*x[i+j+k]*w[j] % mod;
x[i+j+k] = x[i+j] - u;
if(x[i+j+k] < 0) x[i+j+k] += mod;
x[i+j] += u;
if(x[i+j] >= mod) x[i+j] -= mod;
}
}
}
if(p == -1){
int inv = qpow(n,mod-2);
for(int i=0;i<n;++i) x[i] = 1LL*x[i]*inv % mod;
}
}
int fac[maxn],inv[maxn];
inline void init(int n){
fac[0] = 1;
for(int i=1;i<=n;++i) fac[i] = 1LL*fac[i-1]*i % mod;
inv[n] = qpow(fac[n],mod-2);
for(int i = n-1;i>=0;--i) inv[i] = 1LL*inv[i+1]*(i+1) % mod;
}
int A[maxn],B[maxn];
int main(){
int n;read(n);
int len;for(len=1;len <= (n+1);len<<=1);len<<=1;
init(n);
for(int i=0;i<=n;++i){
if(i&1) A[i] = -inv[i] + mod;
else A[i] = inv[i];
}
for(int i=2;i<=n;++i){
B[i] = qpow(i,n+1) - i + mod;
if(B[i] < 0) B[i] += mod;
B[i] = (1LL*B[i]*qpow(i-1,mod-2)%mod*inv[i]) % mod;
}B[1] = n;
FNT(A,len,1);FNT(B,len,1);
for(int i=0;i<len;++i) A[i] = 1LL*A[i]*B[i] % mod;
FNT(A,len,-1);
int ans = 1;
for(int i=1,f2=2;i<=n;++i){
ans = (ans + 1LL*A[i]*f2%mod*fac[i]) % mod;
f2 = (f2<<1) % mod;
}printf("%d\n",ans);
getchar();getchar();
return 0;
}

bzoj4555: 求和sum 快速傅立叶变换的更多相关文章

  1. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  2. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  3. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  4. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  7. NVIDIA GPU的快速傅立叶变换

    NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理, ...

  8. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

  9. [快速傅立叶变换&快速傅里叶变换]【旧 手写笔记】

    $FFT$好美啊 参考资料: 1.算法导论 2.Miskcoo 3.Menci 4.虚数的意义-阮一峰 简单说一下,具体在下面的图片 实现: 可以用$complex$也可以手写 和计算几何差不多 注意 ...

随机推荐

  1. 我眼中的Oracle Database Software 和 Oracle Database

    我眼中的Oracle Database Software 和 Oracle Database 我喜欢用微软的office软件和word文档(确切的说是:自己写的word文档,能够把这个Word文档想象 ...

  2. 【PyCharm编辑器】之引用selenium包提示错误:Unresolved reference 'selenium' less... (Ctrl+F1)

    一.现象还原: 当新建.py文件时,需要引用selenium中的方法时,报错,提示红波浪线: Unresolved reference 'selenium' less... (Ctrl+F1) Thi ...

  3. Double类parseDouble()和valueOf()方法的区别

    数字类型的String字符串转换为浮点数通常采用parseDouble()和valueOf()方法, 两者主要是存在以下两点区别. 区别一:参数区别Double.parseDouble(java.la ...

  4. ASP.NET动态网站制作(7)-- JS(2)

    前言:这节课是JS的第二节课,主要是JS中的控制语句. 内容: 1.条件语句:  (1)比较操作符:==,!=,>,>=,<,<=.字符串大小写转换:toUpperCase() ...

  5. Mac 下 Git 的基础命令行操作

    Mac 下 Git 的基础命令行操作 sudo apt-get install git-core //安装Git 用户配置 git config --global user.name "Yo ...

  6. python 基础 2.2 if流程控制(二)

    一. if  else   1.逻辑值(bool)包含了两个值: ----True:表示非空的值,比如:string ,tuple,list,set,dictonary,所有非空的序列. -----F ...

  7. grok表达式

    grok表达式 grok其实就是封装了各种常用的正则表达式,屏蔽了直接写正则的复杂性:通过它可以提取日志内容,按照自己指定的格式输出到kibana. http://udn.yyuap.com/doc/ ...

  8. TVirtualStringTree的Minimal例子学习

    预步骤第一步,定义数据结构type PMyRec = ^TMyRec; TMyRec = record Caption: WideString; end;预步骤第二步,规定取得节点数据时候的大小pro ...

  9. DAICO模式到底是什么?

    自从V神提出DAICO以来,已经有项目围绕DAICO模式落地,但是DAICO到底是什么呢? 所谓DAIC0,其实就是DAO+IC0. DAO是DistributedAutonomous Organiz ...

  10. PowerDesigner 125 导致 Word 2007文档内容无法选中以及点击鼠标没用