题目大意

给定\(S(n,m)\)表示第二类斯特林数,定义函数\(f(n)\)

\[f(n) = \sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)
\]

给定正整数\(n,(n\leq 10^5)\),求\(f(n)\)

题解

我们都知道第二类斯特林数的递推公式为

\[S(i,j) = S(i-1,j-1) + j*S(i-1,j),(1 \leq j \leq i-1)
\]

且有边界\(S(i,i) = 1(0 \leq i),S(i,0) = 0(1 \leq i)\)

第二类斯特林数\(S(i,j)\)的含义是把\(i\)个元素划分成\(j\)个无序的集合的方案

假设允许空集合的存在的话,方案即为\(m^n\)

我们应用容斥原理,枚举至少有多少空集合空集合,那么有

\[S(n,m) = \frac{1}{m!}\sum_{k=1}^{m}C_m^k(m-k)^n(-1)^k
\]

设\(g(n) = \sum_{i=0}^nS(n,i)2^i(i!)\)

那么我们将\(S(n,m)\)代入\(g(n)\)化简得

\[g(n) = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

那么将\(g(n)\)带入答案表达式中,有

\[ans = \sum_{n=0}^x\sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(m-k)^n}{(m-k)!}
\]

这时我们发现每次最外层的\(n -> (n+1)\)时,都相当于在内部的\(\frac{(m-k)^n}{(m-k)!}\)一项上又加上了一个\(\frac{(m-k)^{n+1}}{(m-k)!}\)

所以我们把这一项做等比数列求和.

设\(g(x) = \frac{x^{n+1} - x}{(x-1)(x!)}\)

那么上式变成了

\[ans = \sum_{m=0}^n2^m(m!)\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)
\]

于是我们在\(\sum_{k=0}^m\frac{(-1)^k}{k!}g(m-k)\)进行FFT计算卷积

这样就只剩下了一个sigma式,for循环一边即可.

复杂度\(O(nlogn)\)

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 600010;
const int mod = 998244353;
const int pri_rt = 3;
int w[maxn];
inline int qpow(int x,int p){
int ret = 1;
for(;p;p>>=1,x=1LL*x*x%mod) if(p&1) ret=1LL*ret*x % mod;
return ret;
}
inline void FNT(int *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j)<j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
int k = m>>1;
int wn = qpow(pri_rt,p == 1 ? (mod-1)/m : (mod-1) - (mod-1)/m);
for(int i=1;i<k;++i) w[i] = 1LL*w[i-1]*wn % mod;
w[0] = 1;
for(int i=0;i<n;i+=m){
for(int j=0;j<k;++j){
int u = 1LL*x[i+j+k]*w[j] % mod;
x[i+j+k] = x[i+j] - u;
if(x[i+j+k] < 0) x[i+j+k] += mod;
x[i+j] += u;
if(x[i+j] >= mod) x[i+j] -= mod;
}
}
}
if(p == -1){
int inv = qpow(n,mod-2);
for(int i=0;i<n;++i) x[i] = 1LL*x[i]*inv % mod;
}
}
int fac[maxn],inv[maxn];
inline void init(int n){
fac[0] = 1;
for(int i=1;i<=n;++i) fac[i] = 1LL*fac[i-1]*i % mod;
inv[n] = qpow(fac[n],mod-2);
for(int i = n-1;i>=0;--i) inv[i] = 1LL*inv[i+1]*(i+1) % mod;
}
int A[maxn],B[maxn];
int main(){
int n;read(n);
int len;for(len=1;len <= (n+1);len<<=1);len<<=1;
init(n);
for(int i=0;i<=n;++i){
if(i&1) A[i] = -inv[i] + mod;
else A[i] = inv[i];
}
for(int i=2;i<=n;++i){
B[i] = qpow(i,n+1) - i + mod;
if(B[i] < 0) B[i] += mod;
B[i] = (1LL*B[i]*qpow(i-1,mod-2)%mod*inv[i]) % mod;
}B[1] = n;
FNT(A,len,1);FNT(B,len,1);
for(int i=0;i<len;++i) A[i] = 1LL*A[i]*B[i] % mod;
FNT(A,len,-1);
int ans = 1;
for(int i=1,f2=2;i<=n;++i){
ans = (ans + 1LL*A[i]*f2%mod*fac[i]) % mod;
f2 = (f2<<1) % mod;
}printf("%d\n",ans);
getchar();getchar();
return 0;
}

bzoj4555: 求和sum 快速傅立叶变换的更多相关文章

  1. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  2. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  3. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

  4. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  7. NVIDIA GPU的快速傅立叶变换

    NVIDIA GPU的快速傅立叶变换 cuFFT库提供GPU加速的FFT实现,其执行速度比仅CPU的替代方案快10倍.cuFFT用于构建跨学科的商业和研究应用程序,例如深度学习,计算机视觉,计算物理, ...

  8. 傅立叶变换系列(五)快速傅立叶变换(FFT)

    说明: 傅里叶级数.傅里叶变换.离散傅里叶变换.短时傅里叶变换...这些理解和应用都非常难,网上的文章有两个极端:“Esay”  Or  “Boring”!如果单独看一两篇文章就弄懂傅里叶,那说明你真 ...

  9. [快速傅立叶变换&快速傅里叶变换]【旧 手写笔记】

    $FFT$好美啊 参考资料: 1.算法导论 2.Miskcoo 3.Menci 4.虚数的意义-阮一峰 简单说一下,具体在下面的图片 实现: 可以用$complex$也可以手写 和计算几何差不多 注意 ...

随机推荐

  1. IOS中公布应用程序,进度条一直不走怎么处理

    在IOS中公布应用程序非常是喜闻乐见. 近期1周.我更新了6次版本号.可是时不时的会卡住,进度条不走. 最后总结了几个原因. 1.在公布前你要确认自己的证书是否配置正确 2.DNS域名server有没 ...

  2. typedef struct与struct定义结构体

    今天在定义结构体的时候发现typedef struct与struct定义结构体有一些不同之处: 结构也是一种数据类型, 能够使用结构变量, 因此,  象其他 类型的变量一样, 在使用结构变量时要先对其 ...

  3. oracle中视图V$PGA_TARGET_ADVICE的用法

    看一下这个视图能给我们带来什么样的信息(视图中每个列都很有帮助):sys@ora10g> SELECT   pga_target_for_estimate / 1024 / 1024 " ...

  4. rst2pdf 中文

    上篇说到用pandoc转换为reST为pdf是使用LaTeX作为中间格式的,而今天要说的rst2pdf貌似是直接转换为pdf的. 安装和调用 rst2pdf目前只支持Python2.7,因此在创建vi ...

  5. struct timeval 和 struct timespec

    struct timeval { time_t tv_sec; suseconds_t tv_usec; }; 測试代码例如以下: #include <stdio.h> #include ...

  6. JavaScript系列问题

    JavaScript系列问题:  0.javascript 基础教程[温故而知新一] 1.通过JS变更页面字体的大小 2.图片压缩优化能有效提高网站浏览速度

  7. SRM 626 D1L1: FixedDiceGameDiv1,贝叶斯公式,dp

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=13239&rd=15859 用到了概率论中的贝叶斯公式,而贝 ...

  8. java jdbc oracle ORA-01795: 列表中的最大表达式数为 1000

    在操作SQL中存在In的数量如果超过1000条会提示   ORA-01795: 列表中的最大表达式数为 1000 归纳有几种方式出现的: 第一种是:我在上一个 [jdbc 同时执行 查询和删除操]作中 ...

  9. SAM4E单片机之旅——13、LCD之ASF初步

    在Atmel Studio 6中,集成了Atmel Software Framework(ASF框架).通过它提供的库,可以很快速地完成新的项目. 这次的最终目标使用ASF在LCD上显示出文字“Hel ...

  10. struts 与 Java Web应用简介

    struts实质上就是JSP Model2的基础上实现的MVC框架. 在Struts框架中,模型有实现业务逻辑的JavaBean或EJB组件构成 视图由一组JSP文件构成. 控制器 控制器由Actio ...