题目链接:

The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 
Input
 
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 
Output
 
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 
Sample Input
 
2
7
2 0 2 1 2 0 5
6
1 2 3 3 0 0
 
Sample Output
 
Case #1: 5
Case #2: 5
 
题意:
 
给一个序列,这里面的0可以变成任何整数;问能得到的LIS的长度是多少;
 
思路:
 
是题解给的思路,当时一直想不通的是如这样的  4 0 5的序列,0夹在两个相邻整数之间,怎么0就会全部用上了呢?后来才知道可以把0当成后面的那个5啊,所以说0才会全部用上;这是一个关键点,0全部用上,然后求LIS的时候先把0都拿走,当是要给这些0留下空间,怎么办呢?就是每个数减去它前边0的个数,这时两个数的差与之前的差相比,减少了这两个数之间0的个数;所以才保证了既是单调,又让0一定在其中;
 
AC代码:
 
/************************************************
┆ ┏┓   ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃       ┃ ┆
┆┃   ━   ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃       ┃ ┆
┆┃   ┻   ┃ ┆
┆┗━┓   ┏━┛ ┆
┆  ┃   ┃  ┆      
┆  ┃   ┗━━━┓ ┆
┆  ┃  AC代马   ┣┓┆
┆  ┃    ┏┛┆
┆  ┗┓┓┏━┳┓┏┛ ┆
┆   ┃┫┫ ┃┫┫ ┆
┆   ┗┻┛ ┗┻┛ ┆
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=20071027;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e5+100;
const int maxn=(1<<8);
const double eps=1e-8; int a[N],sum,d[N],g[N]; int main()
{
int t,Case=0;
read(t);
while(t--)
{
int n,cnt=0,x;
read(n);
sum=0;
For(i,1,n)
{
read(x);
if(x==0)sum++;
else a[++cnt]=x-sum;
g[i]=inf;
}
int ans=0;
For(i,1,cnt)
{
int temp=lower_bound(g+1,g+cnt+1,a[i])-g;
g[temp]=a[i];
ans=max(ans,temp);
}
printf("Case #%d: %d\n",++Case,ans+sum);
}
return 0;
}

  

hdu-5773 The All-purpose Zero(LIS)的更多相关文章

  1. HDU 5773 The All-purpose Zero (变形LIS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5773 0可以改变成任何数,问你严格递增的子序列最长是多少. 猜测0一定在最长上升子序列中用到,比如2 ...

  2. HDU 5773 The All-purpose Zero 求LIS

    求最长上升子序列长度: 单纯的dp时间复杂度是O(n*n)的 dp[i] = max(dp[j]+1); (0=<j<=i-1 && a[i]>a[j]) 用二分可以 ...

  3. HDU 5773 The All-purpose Zero 脑洞LIS

    给定一个序列,里面的0是可以任变的.问变化后最长的LIS的长度 首先,0全部选上是不亏的.这个不知道怎么说,YY一下吧. 最关键的就是解决2 0 0 3 这种问题了. 注意到这个序列的LIS应该是3 ...

  4. hdu 5773 The All-purpose Zero 最长上升子序列+树状数组

    题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...

  5. HDU 5773 The All-purpose Zero(O(nlgn)求LIS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5773 题意: 求LIS,其中的0可以看做任何数. 思路: 因为0可以看做任何数,所以我们可以先不管0,先求一遍L ...

  6. HDU 5773:The All-purpose Zero(贪心+LIS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5773 The All-purpose Zero Problem Description   ?? gets an ...

  7. hdu 5773 The All-purpose Zero 线段树 dp

    The All-purpose Zero 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 Description ?? gets an seq ...

  8. HDU 5087 (线性DP+次大LIS)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5087 题目大意:求次大LIS的长度.注意两个长度相同的LIS大小比较,下标和大的LIS较大. 解题思 ...

  9. 【动态规划】【二分】【最长上升子序列】HDU 5773 The All-purpose Zero

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5773 题目大意: T组数据,n个数(n<=100000),求最长上升子序列长度(0可以替代任何 ...

  10. HDU 5773 The All-purpose Zero(树状数组)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5773 [题目大意] 给出一个非负整数序列,其中的0可以替换成任意整数,问替换后的最长严格上升序列长 ...

随机推荐

  1. GridView数据绑定控件的模版列时设置显示的格式

    形式 语法 结果 数字 {0:N2} 12.36   数字 {0:N0} 13   货币 {0:c2} $12.36   货币 {0:c4} $12.3656   货币 "¥{0:N2}&q ...

  2. JMeter 压力測试使用函数和 CSV 文件參数化 json 数据

            在 http Load Testing 中.json 数据的提交是个让人头疼的问题.本文具体介绍怎样进行 JMeter 的 json 測试提交,以及怎样将其參数化.        St ...

  3. angular - 编辑html文件-4

    启动服务器: angular默认端口:4200 ng serve --port 3000 --open 输入本条命令后,会自动打开默认浏览器以及打开APP页 推荐开发工具webStorm,全平台兼容M ...

  4. C#动态编译dll或exe

    string strCode = @" using System; using System.Text; using System.Collections.Generic; using Sy ...

  5. Zoj2421 广搜

    <span style="color:#330099;">/* M - 广搜 加强 Time Limit:2000MS Memory Limit:65536KB 64b ...

  6. ORCAD元件属性白色区域和黄色区域的理解

    白色部分为instance属性,黄色部分为occurence 属性 在平坦式电路中,黄色部分是默认不显示的. 在层次式电路中,黄色部分会显示.      如果这两个区域的Reference不同,以黄色 ...

  7. shell tr命令的使用

    http://fyan.iteye.com/blog/1172279 tr是translate的简写,亦即翻译,但是遗憾的是,它不能翻译句子,只能翻译单个字符. 1 tr的工作原理是什么? 先记住一点 ...

  8. openwrt 修改 banner

    http://www.network-science.de/ascii/ rectangles 风格

  9. ffmpeg mediacodec 硬解初探

    ffmpeg mediacodec 硬解初探 1编译: ffmpeg自3.1版本加入了android mediacodec硬解支持,解码器如图 硬件加速器如图(还不清楚硬件加速器的功能) 编译带h26 ...

  10. 使用 lstat 函数获取文件信息

    前言 在之前的文章中,描述过如何用 fcntl 函数改变文件的状态标记.但,文件还有很多信息,如文件类型,权限设置,设备编号,访问时间等等.如果要获取这些信息,则使用函数 lstat 可以轻松达到这个 ...