100个汉字,放在data目录下。直接将下述文件和data存在同一个目录下运行即可。

关键参数:

run_mode = "train" 训练模型用,修改为validation 表示验证100张图片的预测精度,修改为inference表示预测 './data/00098/102544.png'这个图片手写识别结果,返回top3。

charset_size = 100 表示汉字数目。如果是全量数据,则为3755.

代码参考了:https://github.com/burness/tensorflow-101/blob/master/chinese_hand_write_rec/src/chinese_rec.py

其中加入:(1)图像随机左右旋转30度特性 (2)断点续传进行训练(3)为了达到更高精度,加入了一个卷积层,见https://github.com/AmemiyaYuko/HandwrittenChineseCharacterRecognition

import tensorflow as tf
import os
import random
import math
import tensorflow.contrib.slim as slim
import time
import logging
import numpy as np
import pickle
from PIL import Image logger = logging.getLogger('Training a chinese write char recognition')
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch) run_mode = "train"
charset_size = 100 # 3755
max_steps = 12002
save_steps = 2000 """
# for online 3755 words training
checkpoint_dir = '/aiml/dfs/checkpoint/'
train_data_dir = '/aiml/data/train/'
test_data_dir = '/aiml/data/test/'
log_dir = '/aiml/dfs/'
""" checkpoint_dir = './checkpoint2/'
train_data_dir = './data/'
test_data_dir = './data/'
log_dir = './' tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}')
tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down")
tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness")
tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast") tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.")
tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.")
tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray")
tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ')
tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval")
tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save") tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir')
tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir')
tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir')
tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir') ##############################
# resume training
tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint')
############################## tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches')
tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size')
FLAGS = tf.app.flags.FLAGS class DataIterator:
def __init__(self, data_dir):
# Set FLAGS.charset_size to a small value if available computation power is limited.
truncate_path = data_dir + ('%05d' % FLAGS.charset_size)
print(truncate_path)
self.image_names = []
for root, sub_folder, file_list in os.walk(data_dir):
if root < truncate_path:
self.image_names += [os.path.join(root, file_path) for file_path in file_list]
random.shuffle(self.image_names)
self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names] @property
def size(self):
return len(self.labels) @staticmethod
def data_augmentation(images):
if FLAGS.random_flip_up_down:
# images = tf.image.random_flip_up_down(images)
images = tf.contrib.image.rotate(images, random.randint(0, 30) * math.pi / 180, interpolation='BILINEAR')
if FLAGS.random_brightness:
images = tf.image.random_brightness(images, max_delta=0.3)
if FLAGS.random_contrast:
images = tf.image.random_contrast(images, 0.8, 1.2)
return images def input_pipeline(self, batch_size, num_epochs=None, aug=False):
images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs) labels = input_queue[1]
images_content = tf.read_file(input_queue[0])
images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
if aug:
images = self.data_augmentation(images)
new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
images = tf.image.resize_images(images, new_size)
image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
min_after_dequeue=10000)
return image_batch, label_batch def build_graph(top_k):
# with tf.device('/cpu:0'):
keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch') conv_1 = slim.conv2d(images, 64, [3, 3], 1, padding='SAME', scope='conv1')
max_pool_1 = slim.max_pool2d(conv_1, [2, 2], [2, 2], padding='SAME')
conv_2 = slim.conv2d(max_pool_1, 128, [3, 3], padding='SAME', scope='conv2')
max_pool_2 = slim.max_pool2d(conv_2, [2, 2], [2, 2], padding='SAME')
conv_3 = slim.conv2d(max_pool_2, 256, [3, 3], padding='SAME', scope='conv3')
max_pool_3 = slim.max_pool2d(conv_3, [2, 2], [2, 2], padding='SAME')
conv_4 = slim.conv2d(max_pool_3, 512, [3, 3], [2, 2], scope="conv4", padding="SAME")
max_pool_4 = slim.max_pool2d(conv_4, [2, 2], [2, 2], padding="SAME") flatten = slim.flatten(max_pool_4) fc1 = slim.fully_connected(slim.dropout(flatten, keep_prob), 1024, activation_fn=tf.nn.tanh, scope='fc1')
logits = slim.fully_connected(slim.dropout(fc1, keep_prob), FLAGS.charset_size, activation_fn=None, scope='fc2')
# logits = slim.fully_connected(flatten, FLAGS.charset_size, activation_fn=None, reuse=reuse, scope='fc')
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32)) global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
train_op = tf.train.AdamOptimizer(learning_rate=rate).minimize(loss, global_step=global_step)
probabilities = tf.nn.softmax(logits) tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return {'images': images,
'labels': labels,
'keep_prob': keep_prob,
'top_k': top_k,
'global_step': global_step,
'train_op': train_op,
'loss': loss,
'accuracy': accuracy,
'accuracy_top_k': accuracy_in_top_k,
'merged_summary_op': merged_summary_op,
'predicted_distribution': probabilities,
'predicted_index_top_k': predicted_index_top_k,
'predicted_val_top_k': predicted_val_top_k} def train():
print('Begin training')
train_feeder = DataIterator(FLAGS.train_data_dir)
test_feeder = DataIterator(FLAGS.test_data_dir)
with tf.Session() as sess:
train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
graph = build_graph(top_k=1)
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')
start_step = 0
if FLAGS.restore:
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt))
start_step += int(ckpt.split('-')[-1]) logger.info(':::Training Start:::')
try:
while not coord.should_stop():
start_time = time.time()
train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
feed_dict = {graph['images']: train_images_batch,
graph['labels']: train_labels_batch,
graph['keep_prob']: 0.8}
_, loss_val, train_summary, step = sess.run(
[graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],
feed_dict=feed_dict)
train_writer.add_summary(train_summary, step)
end_time = time.time()
logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
if step > FLAGS.max_steps:
break
if step % FLAGS.eval_steps == 1:
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['keep_prob']: 1.0}
accuracy_test, test_summary = sess.run(
[graph['accuracy'], graph['merged_summary_op']],
feed_dict=feed_dict)
test_writer.add_summary(test_summary, step)
logger.info('===============Eval a batch=======================')
logger.info('the step {0} test accuracy: {1}'
.format(step, accuracy_test))
logger.info('===============Eval a batch=======================')
if step % FLAGS.save_steps == 1:
logger.info('Save the ckpt of {0}'.format(step))
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'),
global_step=graph['global_step'])
except tf.errors.OutOfRangeError:
logger.info('==================Train Finished================')
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step'])
finally:
coord.request_stop()
coord.join(threads) def validation():
print('validation')
test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = []
final_predict_index = []
groundtruth = [] with tf.Session() as sess:
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
graph = build_graph(top_k=3) sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt)) print(':::Start validation:::')
try:
i = 0
acc_top_1, acc_top_k = 0.0, 0.0
while not coord.should_stop():
i += 1
start_time = time.time()
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['keep_prob']: 1.0}
batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],
graph['predicted_val_top_k'],
graph['predicted_index_top_k'],
graph['accuracy'],
graph['accuracy_top_k']], feed_dict=feed_dict)
final_predict_val += probs.tolist()
final_predict_index += indices.tolist()
groundtruth += batch_labels.tolist()
acc_top_1 += acc_1
acc_top_k += acc_k
end_time = time.time()
logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
.format(i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError:
logger.info('==================Validation Finished================')
acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))
finally:
coord.request_stop()
coord.join(threads)
return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth} def inference(image):
print('inference')
temp_image = Image.open(image).convert('L')
temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
temp_image = np.asarray(temp_image) / 255.0
temp_image = temp_image.reshape([-1, 64, 64, 1])
with tf.Session() as sess:
logger.info('========start inference============')
# images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
# Pass a shadow label 0. This label will not affect the computation graph.
graph = build_graph(top_k=3)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],
feed_dict={graph['images']: temp_image, graph['keep_prob']: 1.0})
return predict_val, predict_index def main(_):
print(FLAGS.mode)
if FLAGS.mode == "train":
train()
elif FLAGS.mode == 'validation':
dct = validation()
result_file = 'result.dict'
logger.info('Write result into {0}'.format(result_file))
with open(result_file, 'wb') as f:
pickle.dump(dct, f)
logger.info('Write file ends')
elif FLAGS.mode == 'inference':
image_path = './data/00098/102544.png'
final_predict_val, final_predict_index = inference(image_path)
logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index,
final_predict_val)) if __name__ == "__main__":
tf.app.run()

cnn handwrite使用原生的TensorFlow进行预测的更多相关文章

  1. Implementing a CNN for Text Classification in TensorFlow

    参考: 1.Understanding Convolutional Neural Networks for NLP 2.Implementing a CNN for Text Classificati ...

  2. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  3. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  4. tensorflow knn 预测房价 注意有 Min-Max Scaling

    示例数据: 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 0.02731 0.00 ...

  5. 基于Tensorflow + Opencv 实现CNN自定义图像分类

    摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...

  6. 利用CNN进行人脸年龄预测

    很久之前做的东西了,最近做了一个人脸相似度检测,里面用到了这里的一个模型,所以抽个空把人脸年龄检测的思路总结一下. 与其他CNN分类问题类似,人脸年龄预测无非就是将人脸分为多个类别,然后训练卷积神经网 ...

  7. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

  8. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

  9. 【转载】史上最全:TensorFlow 好玩的技术、应用和你不知道的黑科技

    [导读]TensorFlow 在 2015 年年底一出现就受到了极大的关注,经过一年多的发展,已经成为了在机器学习.深度学习项目中最受欢迎的框架之一.自发布以来,TensorFlow 不断在完善并增加 ...

随机推荐

  1. 唤醒你的大脑 --- javascript冒泡排序

    var a; a = [1, 2, 3, 11, 55, 5, 0, 44]; (function bubbleSort() { for (var i = 0; i <= a.length - ...

  2. spring事务详细理解

    数据并发的问题 一个数据库可能拥有多个访问客户端,这些客户端都可以并发方式访问数据库.数据库中的相同数据可能同时被多个事务访问,如果没有采取必要的隔离措施,就会导致各种并发问题,破坏数据的完整性.这些 ...

  3. cocos2d-x step by step(3) Doub le Kill简单的一些小动画

    在触控厮混了两年多,不过达到了自己的初衷以及目的. 目前从事cocos2d的更改和调优移植工作. 1 简单的一个图片放大和缩小 auto sprite = Sprite::create("l ...

  4. Hibernate操作Blob数据

      首先看数据库.数据库中新建一个BlobTable表,表中有两个字段,一个id(主键)一个picture字段是Blob类型字段.然后使用Hibernate向该数据库中写入和读取数据 在POJO类中p ...

  5. maven的学习系列(二)—maven的文件夹结构

    maven的文件有自己的组织方式,例如以下所看到的: ---maven ----src ---main ----java ---test ----java -----pom.xml 当运行完mvn c ...

  6. asp .net 为图片添加文字水印(内包含有加图片水印的方法) .

    在项目中先创建一个Imag_writer 类库 在该类库下分别创建两个枚举类型WaterMarkType (水印的类型).WaterMarkPosition (水印的位置).代码如下: using S ...

  7. python(13)- 文件处理应用Ⅱ:增删改查

    用户选择1,增加功能: 用户输入www.oldboy2.org和server 11111 weight 2222 maxconn 3333后, 在www.oldboy2.org下增加一条server信 ...

  8. 笔记08 WPF导航

    如何在winform中做导航,如何重定向界面,就产生了争执. 是用window还是Page还是UserControl? 先不管用啥.我们先比较一下各自的优缺点. 在WPF中使用导航,内容被组织在Pag ...

  9. linux查看进程、端口

    1 查看进程pidps -ef|grep tomcat 2 查看进程占用的端口netstat -ntlp|grep pid 3 查看端口对应的进程号lsof -i:portid

  10. 基于bootstrap+MySQL搭建动态网站

    这个只是在上个练习项目中的后台管理项目加入了MySQL,数据不是写死的,而是从数据库中获取到的,获取到数据执行增删改查操作,没什么 计数难度,不做介绍