BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)
LCM Extreme
64-bit integer IO format: %lld Java class name: Main
Find the result of the following code:
unsigned long long allPairLcm(int n){
unsigned long long res = 0;
for( int i = 1; i<=n;i++)
for(int j=i+1;j<=n;j++)
res += lcm(i, j);// lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out.
Input
Input starts with an integer T (≤ 25000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 5*106
).
Output
For each case, print the case number and the value returned by the function 'allPairLcm(n)'. As the
result can be large, we want the result modulo 2
64
.
Sample Input Output for Sample Input
4
2
10
13
100000
Case 1: 2
Case 2: 1036
Case 3: 3111
Case 4: 9134672774499923824
/*
题目大意:求lcm(1,2)+lcm(1,3)+lcm(2,3)+....+lcm(1,n)+....+lcm(n-2,n)+lcm(n-1,n)
设sum(n)为sum(lcm(i,j))(1<=i<j<=n)之间最小公倍数的和,f(n)为sum(i*n/gcd(i,n))(1<=i<n)
那么sum(n)=sum(n-1)+f(n)。可以用线性欧拉筛选+递推来做。
*/
#include <iostream>
#include <cstdio>
#include <cstring> typedef unsigned long long LL;
const int maxn=;
LL phi[maxn],sum[maxn],f[maxn]; void Euler()
{
memset(phi,,sizeof(phi));
int i,j;phi[]=;
for(i=;i<maxn;i++)
{
if(phi[i]) continue;
for(j=i;j<maxn;j+=i)
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(i=;i<maxn;i++) phi[i]=phi[i]*i/;//与i互质的数之和
} void init()
{
Euler();
memset(sum,,sizeof(sum));
memset(f,,sizeof(f));
int i,j;sum[]=f[]=;
for(i=;i<maxn;i++)
{
f[i]+=phi[i]*i;//与i互质的数之间的lcm之和
for(j=*i;j<maxn;j+=i)
f[j]+=phi[i]*j;//gcd(x,j)=i的sum(lcm(x,j))
sum[i]=sum[i-]+f[i];
}
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
init();
int t,icase=,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Case %d: %llu\n",++icase,sum[n]);
}
return ;
}
BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)的更多相关文章
- LightOJ 1375 - LCM Extreme 莫比乌斯反演或欧拉扩展
题意:给出n [1,3*1e6] 求 并模2^64. 思路:先手写出算式 观察发现可以化成 那么关键在于如何求得i为1~n的lcm(i,n)之和.可以知道lcm(a,b)为ab/gcd(a,b) 变换 ...
- 【51Nod 1363】最小公倍数之和(欧拉函数)
题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...
- UVA 11426 (欧拉函数&&递推)
题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...
- POJ_3090 Visible Lattice Points 【欧拉函数 + 递推】
一.题目 A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), ...
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- BZOJ 2818 Gcd 线性欧拉
题意:链接 方法:线性欧拉 解析: 首先列一下表达式 gcd(x,y)=z(z是素数而且x,y<=n). 然后我们能够得到什么呢? gcd(x/z,y/z)=1; 最好还是令y>=x 则能 ...
- uva 11426 线性欧拉函数筛选+递推
Problem J GCD Extreme (II) Input: Standard Input Output: Standard Output Given the value of N, you w ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- POJ2909_Goldbach's Conjecture(线性欧拉筛)
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...
随机推荐
- ctDNA|endosymbiosis
5.10叶绿体基因组编码多种蛋白质和RNA 叶绿体和线粒体的共同点:叶绿体和线粒体的大小,功能(编码区)大体一致,但叶绿体拥有更多基因,所以在编码tRNA时,也有内含子作为被剪切片段. 因为在原核生物 ...
- 《剑指offer》51:数组中的逆序对
题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...
- 在Python中使用help帮助
在Python中使用help帮助 >>> import numpy >>> help(numpy.argsort) Help on function argsort ...
- DNA Pairing-freecodecamp算法题目
DNA Pairing 1.要求 DNA 链缺少配对的碱基.依据每一个碱基,为其找到配对的碱基,然后将结果作为第二个数组返回. Base pairs(碱基对)是一对 AT 和 CG,为给定的字母匹配缺 ...
- 我的offer之路(一)
目录 1.职业规划. 2.刷题. 3.看书. <剑指offer> <数据结构算法与应用:C++语言描述 > <Effective C++> <C与指针> ...
- 转 Anaconda启动卡死的解决方案
https://blog.csdn.net/meng_zhi_xiang/article/details/83651676
- STL 之 sort 函数使用方法
关于Sort Sort函数是C++ STL(Standard Template Library / 标准函数库) <algorithm>头文件中的一个排序函数,作用是将一系列数进行排序,因 ...
- 【Python学习之五】高级特性2(切片、迭代、列表生成器、生成器、迭代器)
2.迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration).在Python中,迭代是通过for ... in来完成的. ...
- linux关于进程、内存和cpu情况
1.load average: 2.03, 1.76, 1.80 1分钟.5分钟.15分钟平均负载 2.%Cpu(s):100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa ...
- 《流畅的python》读书笔记,第一章:python数据模型
这本书上来就讲了魔法方法,也叫双下方法.特殊方法,通过两个例子对让读者了解了双下方法的用法,更重要的是,让我一窥Python的语言风格和给使用者的自由度. 第一个例子:一摞Python风格的纸牌: i ...