The Luckiest number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 980    Accepted Submission(s): 301

Problem Description
Chinese
people think of '8' as the lucky digit. Bob also likes digit '8'.
Moreover, Bob has his own lucky number L. Now he wants to construct his
luckiest number which is the minimum among all positive integers that
are a multiple of L and consist of only digit '8'.
 
Input
The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.

 
Output
For
each test case, print a line containing the test case number( beginning
with 1) followed by a integer which is the length of Bob's luckiest
number. If Bob can't construct his luckiest number, print a zero.
 
Sample Input
8
11
16
0
 
Sample Output
Case 1: 1
Case 2: 2
Case 3: 0
做这个题的前提有两个公式:1.(a/b)%mod = a%(b*mod)/b%mod  2.待证明的公式: ax%b = 0 => a%(b/gcd(x,b)) 详情参见我的上一篇博客
这个题我们可以化成 (8*(10^k-1)/9)%L = 0 ---->  8*(10^k-1)%(9*L) 求出 d = gcd(9*L)
然后根据2化成 (10^k-1) % (9*L/d) => (10^k)%(9*L) = 1 又可以根据欧拉定理来求解了。。和我的上一题差不多。。但是这个题更坑,pow_mod是满足不了精度的,总之
参考了n多博客和资料才弄出这题。。高精度快速幂模模板get
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;
typedef long long LL;
LL e[][];
LL phi(LL x)
{
LL ans=x;
for(LL i=; i*i<=x; i++)
if(x%i==)
{
ans=ans/i*(i-);
while(x%i==) x/=i;
}
if(x>)
ans=ans/x*(x-);
return ans;
}
LL gcd(LL a,LL b)
{
return b==?a:gcd(b,a%b);
}
void devide(LL ans,int &id)
{
for(LL i=; i*i<=ans; i++) ///分解质因数
{
if(ans%i==)
{
e[id][]=i;
e[id][]=;
while(ans%i==) ans/=i,e[id][]++;
id++;
}
}
if(ans>)
{
e[id][]=ans;
e[id++][]=;
}
}
LL modular_multi(LL a, LL b, LL c) {/// a * b % c
LL res, temp;
res = , temp = a % c;
while (b) {
if (b & ) {
res += temp;
if (res >= c) {
res -= c;
}
}
temp <<= ;
if (temp >= c) {
temp -= c;
}
b >>= ;
}
return res;
}
LL modular_exp(LL a, LL b, LL c) { ///a ^ b % c 改成mod_pow就不行,中间发生了溢出,还是这个模板靠谱
LL res, temp;
res = % c, temp = a % c;
while (b) {
if (b & ) {
res = modular_multi(res, temp, c);
}
temp = modular_multi(temp, temp, c);
b >>= ;
}
return res;
}
int main()
{
LL l;
int t= ;
while(~scanf("%lld",&l),l)
{
printf("Case %d: ",t++);
LL d = gcd(,*l);
LL a = *l/d;
if(gcd(a,)!=){
printf("0\n");
}else{
LL ans = phi(a);
int id = ;
devide(ans,id);
for(int i=;i<id;i++){
for(int j=;j<e[i][];j++){
if(modular_exp(,ans/e[i][],a)==) ans/=e[i][];
}
}
printf("%lld\n",ans);
}
}
return ;
}
 

hdu 2462(欧拉定理+高精度快速幂模)的更多相关文章

  1. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. hdu 4602 递推关系矩阵快速幂模

    Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  4. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  5. hdu 5187(高精度快速幂)

    zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  6. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  7. codeforces magic five --快速幂模

    题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k ...

  8. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  9. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

随机推荐

  1. 【费用流】 ICPC 2016 China Final J. Mr.Panda and TubeMaster

    表示“必须选”的模型 题目大意 题目分析 一个格子有四种方式看上去很难处理.将横竖两个方向分开考虑,会发现:因为收益只与相邻格子是否连通有关,所以可以将一个格子拆成表示横竖两个方向的,互相独立的点. ...

  2. 单行代码实现xml转换成数组

    $string = '<xml> <return_code><![CDATA[SUCCESS]]></return_code> <return_m ...

  3. 使用三层交换配置DHCP为不同VLAN分配IP地址

    三层交换的原理以及DHCP的原理,作者在这里就不详细的解释了,在这里通过一个案例来了解使用三层交换做DHCP服务器,并为不同网段分配IP地址.在生产环境中,使用路由器或交换机做DHCP服务器要常见一些 ...

  4. 忘记root密码怎么办-单用户模式修改root密码

    忘记root密码怎么办-单用户模式修改root密码================================= 1,开机3秒内按下向下的方向键,目的是为了不让它进入系统,而是停留在开机界面. 2 ...

  5. 科学计算库Numpy——numpy.ndarray

    创建ndarray 元素类型 对于ndarray结构来说,里面所有的元素必须是同一类型的,如果不是的话,会自动的向下进行转换. 元素类型所占字节数 数组维数 元素个数 数组的维度 数组中填充固定值 索 ...

  6. 【全面】Linux基础知识和基本操作语句大全(一)

    接触Linux已经有一段时间了,由于实际需要,三三两两地掌握了一些基本语法和实用语句,主要都是在日常开发中用得比较多的,条理不是特别清晰,请见谅!下面开始上硬货!! 基本操作: 关闭Linux系统的命 ...

  7. ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)

    题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...

  8. list_add_tail()双向链表实现分析

    struct list_head { struct list_head *next, *prev; }; list_add_tail(&buf->vb.queue, &vid-& ...

  9. #2 create and populate a database && realistic and practical applications

    The Chapter3 & Chapter4 of this book tells you how to create a realistic app on the web through ...

  10. git仓库删除所有提交历史记录

    stackoverflow原问题地址:http://stackoverflow.com/questions/13716658/how-to-delete-all-commit-history-in-g ...