The Luckiest number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 980    Accepted Submission(s): 301

Problem Description
Chinese
people think of '8' as the lucky digit. Bob also likes digit '8'.
Moreover, Bob has his own lucky number L. Now he wants to construct his
luckiest number which is the minimum among all positive integers that
are a multiple of L and consist of only digit '8'.
 
Input
The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.

 
Output
For
each test case, print a line containing the test case number( beginning
with 1) followed by a integer which is the length of Bob's luckiest
number. If Bob can't construct his luckiest number, print a zero.
 
Sample Input
8
11
16
0
 
Sample Output
Case 1: 1
Case 2: 2
Case 3: 0
做这个题的前提有两个公式:1.(a/b)%mod = a%(b*mod)/b%mod  2.待证明的公式: ax%b = 0 => a%(b/gcd(x,b)) 详情参见我的上一篇博客
这个题我们可以化成 (8*(10^k-1)/9)%L = 0 ---->  8*(10^k-1)%(9*L) 求出 d = gcd(9*L)
然后根据2化成 (10^k-1) % (9*L/d) => (10^k)%(9*L) = 1 又可以根据欧拉定理来求解了。。和我的上一题差不多。。但是这个题更坑,pow_mod是满足不了精度的,总之
参考了n多博客和资料才弄出这题。。高精度快速幂模模板get
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;
typedef long long LL;
LL e[][];
LL phi(LL x)
{
LL ans=x;
for(LL i=; i*i<=x; i++)
if(x%i==)
{
ans=ans/i*(i-);
while(x%i==) x/=i;
}
if(x>)
ans=ans/x*(x-);
return ans;
}
LL gcd(LL a,LL b)
{
return b==?a:gcd(b,a%b);
}
void devide(LL ans,int &id)
{
for(LL i=; i*i<=ans; i++) ///分解质因数
{
if(ans%i==)
{
e[id][]=i;
e[id][]=;
while(ans%i==) ans/=i,e[id][]++;
id++;
}
}
if(ans>)
{
e[id][]=ans;
e[id++][]=;
}
}
LL modular_multi(LL a, LL b, LL c) {/// a * b % c
LL res, temp;
res = , temp = a % c;
while (b) {
if (b & ) {
res += temp;
if (res >= c) {
res -= c;
}
}
temp <<= ;
if (temp >= c) {
temp -= c;
}
b >>= ;
}
return res;
}
LL modular_exp(LL a, LL b, LL c) { ///a ^ b % c 改成mod_pow就不行,中间发生了溢出,还是这个模板靠谱
LL res, temp;
res = % c, temp = a % c;
while (b) {
if (b & ) {
res = modular_multi(res, temp, c);
}
temp = modular_multi(temp, temp, c);
b >>= ;
}
return res;
}
int main()
{
LL l;
int t= ;
while(~scanf("%lld",&l),l)
{
printf("Case %d: ",t++);
LL d = gcd(,*l);
LL a = *l/d;
if(gcd(a,)!=){
printf("0\n");
}else{
LL ans = phi(a);
int id = ;
devide(ans,id);
for(int i=;i<id;i++){
for(int j=;j<e[i][];j++){
if(modular_exp(,ans/e[i][],a)==) ans/=e[i][];
}
}
printf("%lld\n",ans);
}
}
return ;
}
 

hdu 2462(欧拉定理+高精度快速幂模)的更多相关文章

  1. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. hdu 4602 递推关系矩阵快速幂模

    Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  4. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  5. hdu 5187(高精度快速幂)

    zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  6. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  7. codeforces magic five --快速幂模

    题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k ...

  8. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  9. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

随机推荐

  1. 【线段树 扫描线 二维数点】loj#6276. 果树

    路径计数转成二维数点很妙啊 题目描述 NiroBC 姐姐是个活泼的少女,她十分喜欢爬树,而她家门口正好有一棵果树,正好满足了她爬树的需求. 这颗果树有 $N$ 个节点,标号 $1 \ldots N$ ...

  2. Python学习笔记: 闭包

    闭包的基本定义 在计算机科学中,闭包(英语:Closure),又称词法闭包(Lexical Closure)或函数闭包(function closures),是引用了自由变量的函数.这个被引用的自由变 ...

  3. leetcode-10-basic

    35. Search Insert Position Given a sorted array and a target value, return the index if the target i ...

  4. poj 3616 奶牛产奶问题 dp算法

    题意:奶牛产奶,农夫有m个时间段可以挤奶,在工作时间 f t 内产奶量为m,每次挤完奶后,奶牛需要休息R.问:怎么安排使得产奶量最大? 思路:区间dp  dp[i]表示第i个时段 对农夫工作的结束时间 ...

  5. JAVA获取网络图片并保存到本地(随机图片接口)

    import java.io.ByteArrayOutputStream; import java.io.File; import java.io.FileOutputStream; import j ...

  6. src与href的区别

    href: 是指向网络资源所在位置,建立和当前元素(锚点)或当前文档(链接)之间的链接,用于超链接. src:是指向外部资源的位置,指向的内容将会嵌入到文档中当前标签所在位置:在请求src资源时会将其 ...

  7. SpringBoot 项目打包部署Resin遇到的问题

    1)javax/validation/ParameterNameProvider 找不到. 解决:A) resin/lib 目录下删掉原来的,validation-api 更新为 validation ...

  8. python算法-排列组合

    排列组合 一.递归 1.自己调用自己 2.找到一个退出的条件 二.全排列:针对给定的一组数据,给出包含所有数据的排列的组合 1:1 1,2:[[1,2],[2,1]] 1,2,3:[[1,2,3],[ ...

  9. 思路清奇:通过 JavaScript 获取移动设备的型号

    我们一般在浏览器里识别用户的访问设备都是通过 User Agent 这个字段来获取的,但是通过它我们只能获取一个大概的信息,比如你用的是 Mac 还是 Windows,用的是 iPhone 还是 iP ...

  10. Python包和日志模块

    1.什么是包    包是模块的一种形式,包的本质就是一个含有__init__.py文件的文件夹 2.为什么要有包 提高开发人员维护性 3.如何用包    导入包就是在导包下的__init__.py   ...