题目大意:

按照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值。

/*
dp[i][j]表示从第i个点到第j个点,划分成j-i-1个三角形的最优解,然后每次转移时,枚举长度和左边界始点,那么根据长度和左边界点就可以知道右边界点,然后枚举左边界和右边界中间的点k,dp[i][j] = min(dp[i][j], max(max(dp[i][k], dp[k][j]), Area(i, k, j)).但是有一个问题,即i,k,j三点围成的三角形是否符合要求,判断的条件即为是否存在除i,k,j三点外的一点位于三角形中,有面积法判断。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std;
const int N = ;
const double INF = 0x3f3f3f3f3f3f;
const double eps = 1e-; struct point {
double x, y;
void get() {
scanf("%lf%lf", &x, &y);
}
}p[N]; int n;
double dp[N][N]; double area (point a, point b, point c) {
return fabs((b.x-a.x)*(c.y-a.y) - (c.x-a.x)*(b.y-a.y))/;
} bool judge(int a,int b,int c) {//是否存在除i,k,j三点外的一点位于三角形中
double cur=area(p[a],p[b],p[c]);
for(int i=;i<n;i++) {
if(i==a||i==b||i==c)
continue;
double tmp=area(p[a],p[b],p[i])+area(p[b],p[c],p[i])+area(p[c],p[a],p[i]);
if(fabs(tmp-cur)<eps)
return false;
}
return true;
} double solve () {
for (int i = ; i < ; i++) {
for (int j = ; j < n; j++)
dp[j][(j+i)%n] = ;
} for (int i = ; i < n; i++)
dp[i][(i+)%n] = area(p[i], p[(i+)%n], p[(i+)%n]);
for(int k=;k<n;k++){
for(int i=;i<n;i++){
int t=(i+k)%n;
dp[i][t]=INF;
for(int j=(i+)%n;j!=t;j=(j+)%n){
if(judge(i,t,j))dp[i][t]=min(dp[i][t],max(max(dp[i][j],dp[j][t]),area(p[i], p[j], p[t])));
}
}
} double ans = INF;
for (int i = ; i < n; i++)
ans = min (ans, dp[i][(i+n-)%n]);
return ans;
} int main () {
freopen("Cola.in","r",stdin);
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d", &n);
for (int i = ; i < n; i++)
p[i].get(); printf("%.1lf\n", solve());
}
return ;
}

100分

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int t,n;
const double INF = 0x3f3f3f3f3f3f;
const double eps = 1e-;
double s[][][],dp[][];
struct node{
double x,y;
}pos[];
double count(int i,int j,int k){//计算面积
double x1=pos[i].x,x2=pos[j].x,x3=pos[k].x;
double y1=pos[i].y,y2=pos[j].y,y3=pos[k].y;
double xx1=x1-x3,xx2=x2-x3;
double yy1=y1-y3,yy2=y2-y3;
double res=fabs((xx1*yy2-xx2*yy1)/2.0);
return res;
}
bool judge(int a,int b,int c){
double cur=s[a][b][c];
for(int i=;i<=n;i++){
if(i==a||i==b||i==c)continue;
double tmp=s[a][b][i]+s[a][c][i]+s[b][c][i];
if(fabs(tmp-cur)<=eps)return ;
}
return ;
}
int main(){
freopen("Cola.in","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(s,,sizeof(s));
memset(dp,,sizeof(dp));
for(int i=;i<n;i++)scanf("%lf%lf",&pos[i].x,&pos[i].y);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++){
//s[i][j][k]=INF;
if(i!=j&&i!=k&&j!=k)
s[i][j][k]=count(i,j,k);
} for(int i=;i<n;i++)dp[i][(i+)%n]=s[i][(i+)%n][(i+)%n];
for(int k=;k<n;k++){
for(int i=;i<n;i++){
int t=(i+k)%n;
dp[i][t]=INF;
for(int j=(i+)%n;j!=t;j=(j+)%n){
if(judge(i,t,j))dp[i][t]=min(dp[i][t],max(max(dp[i][j],dp[j][t]),s[i][j][t]));
}
}
}
double ans=INF;
for(int i=;i<n;i++)
ans=min(ans,dp[i][(i+n-)%n]);
printf("%.1lf\n",ans);
}
}

wa 预处理了所有三角形的面积就迷之wa了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
using namespace std;
int t,n;
int main(){
srand(time());
t=rand()%+;
printf("%d\n",t);
while(t--){
n=rand()%+;
printf("%d\n",n);
for(int i=;i<=n;i++){
int x=rand()%+,y=rand()%+;
printf("%d %d\n",x,y);
}
}
}

data 造小数据

#include<iostream>
#include<cstdio>
#include<cstring>
#include<windows.h>
using namespace std;
int main(){
int t=;
while(t--){
system("1331_data>Cola.in");
system("1331_thmyl<Cola.in>1.out");
system("1331_std<Cola.in>2.out");
if(system("fc 1.out 2.out"))break;
}
system("pause");
}

对拍

uva1331 Minimax Triangulation的更多相关文章

  1. UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化

    题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...

  2. uva 1331 - Minimax Triangulation(dp)

    option=com_onlinejudge&Itemid=8&page=show_problem&category=514&problem=4077&mosm ...

  3. Minimax Triangulation

    题意: 按顺序给定一些点,把这些点分割为n - 2个三角形,花费为最大三角形面积,求最小花费 分析: 区间dp,dp[i][j]表示完成区间[i,j]最小花费,dp[i][j]=min(dp[i][j ...

  4. spoj Minimax Triangulation

    题解: dp+计算几何 F[i][j]表示第i-j条边的答案 然后转移一下 代码: #include<bits/stdc++.h> using namespace std; ]; ][]; ...

  5. UVa 1331 - Minimax Triangulation(区间DP + 计算几何)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. UVA - 1331 Minimax Triangulation (区间dp)(最优三角剖分)

    题目链接 把一个多边形剖分成若干个三角形,使得其中最大的三角形面积最小. 比较经典的一道dp问题 设dp[l][r]为把多边形[l,r]剖分成三角形的最大三角形面积中的最小值,则$dp[l][r]=m ...

  7. Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

    题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...

  8. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

  9. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

随机推荐

  1. BZOJ 1193 [HNOI2006]马步距离:大范围贪心 小范围暴搜

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1193 题意: 给定起点(px,py).终点(sx,sy).(x,y < 100000 ...

  2. POJ 3744 Scout YYF I:概率dp

    题目链接:http://poj.org/problem?id=3744 题意: 有n个地雷,位置为pos[i]. 在每个位置,你向前走一步的概率为p,向前走两步的概率为1-p. 你的初始位置为1. 问 ...

  3. ES 相似度算法设置(续)

    Tuning BM25 One of the nice features of BM25 is that, unlike TF/IDF, it has two parameters that allo ...

  4. listen 76

    Flavors Fluctuate With Temperature Does an ice-cold drink actually taste better than the same bevera ...

  5. 2018.3.3 How too much fructose may cause liver damage

    Fructose is the sweetest of the natural sugars. As its name suggests, it is found mainly in fruits. ...

  6. C/C++的四大内存分区和常量的存储位置

    原文:https://blog.csdn.net/k346k346/article/details/45592329 正确的理解C/C++程序的内存分区,是合格程序猿的基本要求. 网络上流形两大版本内 ...

  7. TCP协议与流通信

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! TCP(Transportation Control Protocol)协议与IP ...

  8. ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  9. js 图片上传

    可能很多不熟悉的图片上传的同学会觉得有点懵,其实做过一次你就会发现特别的简单. 只是一个formData格式的表单提交,把地址写到 action = "" 里面就可以了,当然你可以 ...

  10. 转 对APK进行重签名

    1.      生成Android APK包签名证书1).     在doc中切换到jdk的bin目录cd C:\Program Files\Java\jdk1.6.0_18\bin2).     运 ...