MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Intro

MobileNet 我已经使用过tensorflow的api在实际场景中取得了很实时的识别效果,其论文的贡献是利用depth-wise卷积和point-wise卷积对一般的卷积核进行优化,使得网络模型的卷积计算量大大减小。这一贡献使得Mobile-Net能够在移动设备上顺利运行,并且取得不错的速度和精度。

Depthwise Separable Convolution

对于标准的卷积而言,假设输入的是DF*DF*M的feature map F,并且生成DG*DG*N的feature map G,使用N个DK*DK*M的kernel去卷积,其对应关系为(步长为1):

total 计算量如下:

举例子说明标准的卷积过程和计算量:

取输入为7*7*3的feature map,卷积核3*3*3,那么需要不考虑padding的情况下滑动的次数就是5*5次,最后三个通道的对应数据加和压缩到一个通道,即完成卷积过程。我们假设有128个卷积核卷积输入图像(即输出通道数是128),那么我们的乘法计算量就是如图所示的86400次。

depth-wise和point-wise卷积的方式是先只用一个3*3的卷积核去卷积原图像,然后再用1*1*3的卷积核去卷积第一次卷积的结果,这样将原来的128次3*3的卷积拆分成了两次卷积,即两次卷积的加和,很明显这个加法比前面的直接相乘的计算量大大减小,这也是mobile-net计算量大大减小的原因。

同样上面的例子,用Depthwise Separable Convolution之后的过程如下图所示,计算量仅仅10275,为标准卷积的12%!

Network Structure and Training

下图是标准卷积和depth-wise卷积的对应关系。

mobile-net的网络结构和参数情况如下图:

dw是depth-wise卷积的简称。

之后作者又提出模型可以再减少计算量,通过引入参数α,即减少dw过程中参与计算的输入通道数量和输出通道数量,引入之后计算量如图所示。

然后,又加了一个超参ρ,作用也是减少计算量,作用在输入feature map的size上。

Conclusion

mobile-net提出的Depthwise Separable Convolution使得深度模型的计算量大大减小,但其减少计算量的同时其实也失去了一定的精度,比如,对于较小模型而言,如果采用这种计算,那么模型的能力可能会下降,这样得到的模型肯定不是最好的,减少了模型的参数数量,很可能使得模型得不到最好的拟合效果。

[论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications的更多相关文章

  1. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  2. [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...

  3. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  4. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  5. 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析

    目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...

  6. Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...

  7. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...

  8. 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读

    2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...

  9. 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications

    论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...

随机推荐

  1. CodeForces - 1017D Round #502 D. The Wu(状压预处理)

    D. The Wu time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  2. Git 时光穿梭鸡 管理修改

    Git跟踪并管理的是修改,而非文件. 什么是修改? 比如你新增了一行,这就是一个修改, 删除了一行,也是一个修改, 更改了某些字符,也是一个修改, 删了一些又加了一些,也是一个修改, 甚至创建一个新文 ...

  3. Jsoncpp写“鱘”的json数据,报错。

    最近在用Json::FastWriter生成json数据时,发现一个问题.含有“鱘”字的json字段会多出一个斜杠,不知道是不是编码的问题. C++要使用JSON来解析数据,一般采用jsoncpp. ...

  4. 洛谷P2814 家谱

    P2814 家谱 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. 输入输出格式 输入格式: 输入由多行组成,首先是一系列有关父子关系 ...

  5. wcf双工通信

    一直以为感觉双工没弄懂,着实觉得很惆怅,在网上了解下双工的一些特点,直接上代码,以便以后项目中用的着: service层: 定义一个IDuplexHello服务接口 [ServiceContract( ...

  6. according to tld or attribute directive in tag file attribute *** does not accept any expressions

    http://stackoverflow.com/questions/13428788/according-to-tld-or-attribute-directive-in-tag-file-attr ...

  7. Educational Codeforces Round 65 (Rated for Div. 2) D. Bicolored RBS

    链接:https://codeforces.com/contest/1167/problem/D 题意: A string is called bracket sequence if it does ...

  8. 转 简单聊聊IT软件项目的风险及应对

    https://www.jianshu.com/p/b347adca87a6 前言 上段时间在一家演讲俱乐部做即兴演讲主持人,聊的就是风险管理,与会的小伙伴分享了不同行业的风险问题,令人受益匪浅,今天 ...

  9. 巨杉db

    巨杉数据库 and mongo db ,分布式数据库,

  10. JavaScript中的小陷阱(不定期更新。。)

    1. var scores = [1, 2, 3]; var total = 0; for (var score in scores) { total += score; } var mean = t ...