Skiing

Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie finds herself at the top left corner of an R (1 <= R <= 100) by C (1 <= C <= 100) grid of elevations E (-25 <= E <= 25). In order to join FJ and the other cows at a discow party, she must get down to the bottom right corner as quickly as she can by travelling only north, south, east, and west.

Bessie starts out travelling at a initial speed V (1 <= V <= 1,000,000). She has discovered a remarkable relationship between her speed and her elevation change. When Bessie moves from a location of height A to an adjacent location of eight B, her speed is multiplied by the number 2^(A-B). The time it takes Bessie to travel from a location to an adjacent location is the reciprocal of her speed when she is at the first location.

Find the both smallest amount of time it will take Bessie to join her cow friends.

Input

* Line 1: Three space-separated integers: V, R, and C, which respectively represent Bessie's initial velocity and the number of rows and columns in the grid.

* Lines 2..R+1: C integers representing the elevation E of the corresponding location on the grid.

Output

A single number value, printed to two exactly decimal places: the minimum amount of time that Bessie can take to reach the bottom right corner of the grid.

Sample Input

1 3 3
1 5 3
6 3 5
2 4 3

Sample Output

29.00

Hint

Bessie's best route is: 
Start at 1,1 time 0 speed 1 
East to 1,2 time 1 speed 1/16 
South to 2,2 time 17 speed 1/4 
South to 3,2 time 21 speed 1/8 
East to 3,3 time 29 speed 1/4
 
 
题意:以邻接矩阵形式读入各点高度,滑到某点速度为v0*2^(原点高度-某点高度),求从左上滑到右下用时。
思路:SPFA。1.0/v即为上一点到当前点用时,扩展到右下点找出最短用时。注意到某点用时一定要提前记录,如果在扩展时现求的话会有许多重复计算,导致TLE。。(pow(,)的计算相当耗时)
ps:SPFA O(kE),k小于等于2(已证明)E为边数,适合稀疏图(可含负边),加优化Dij O((n+m)logn)适合稠密图。在练习最短路时一直会拿这两者来比较,这次用SPFA来写,感觉和BFS相似,却也有不同之处,SPFA会用标记数组记录进入队列的点,而当点出队列时会取消标记(以后可能会再用到),进而松弛更新。
 
#include<stdio.h>
#include<math.h>
#include<float.h> //DBL_MAX头文件
#include<queue>
using namespace std; int a[][],b[][];
double dis[][],sp[][];
int t[][]={{,},{,},{-,},{,-}};
int v0,r,c;
struct Node{
int x,y;
}node;
double spfa(int x,int y)
{
int i,j;
queue<Node> q;
for(i=;i<=r;i++){
for(j=;j<=c;j++){
dis[i][j]=DBL_MAX;
}
}
dis[x][y]=;
node.x=x;
node.y=y;
q.push(node);
b[x][y]=;
while(q.size()){
int fx=q.front().x;
int fy=q.front().y;
q.pop();
b[fx][fy]=;
for(i=;i<;i++){
int tx=fx+t[i][];
int ty=fy+t[i][];
double t=sp[fx][fy];
if(tx<||ty<||tx>r||ty>c) continue;
if(dis[fx][fy]+t<dis[tx][ty]){
dis[tx][ty]=dis[fx][fy]+t;
if(!b[tx][ty]){
node.x=tx;
node.y=ty;
q.push(node);
b[tx][ty]=;
}
}
}
}
return dis[r][c];
} int main()
{
int i,j;
scanf("%d%d%d",&v0,&r,&c);
for(i=;i<=r;i++){
for(j=;j<=c;j++){
scanf("%d",&a[i][j]);
sp[i][j]=1.0/(v0*pow(2.0,a[][]-a[i][j])); //提前记录
}
}
printf("%.2f\n",spfa(,));
return ;
}

POJ - 3037 Skiing SPFA的更多相关文章

  1. POJ 3037 Skiing(如何使用SPFA求解二维最短路问题)

    题目链接: https://cn.vjudge.net/problem/POJ-3037 Bessie and the rest of Farmer John's cows are taking a ...

  2. POJ 3037 Skiing

    Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4810   Accepted: 1287   Special ...

  3. POJ 3037 Skiing(Dijkstra)

    Skiing Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4668   Accepted: 1242   Special ...

  4. Skiing POJ 3037 很奇怪的最短路问题

    Skiing POJ 3037 很奇怪的最短路问题 题意 题意:你在一个R*C网格的左上角,现在问你从左上角走到右下角需要的最少时间.其中网格中的任意两点的时间花费可以计算出来. 解题思路 这个需要发 ...

  5. POJ 3037 SPFA

    题意: 思路: 我们可以发现 到每个点的速度是一样的 那这就成水题了-. 裸的SPFA跑一哈 搞定 //By SiriusRen #include <cmath> #include < ...

  6. POJ 1860(spfa)

    http://poj.org/problem?id=1860 题意:汇率转换,与之前的2240有点类似,不同的是那个题它去换钱的时候,是不需要手续费的,这个题是需要手续费的,这是个很大的不同. 思路: ...

  7. poj 3621 二分+spfa判负环

    http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...

  8. poj 1847( floyd && spfa )

    http://poj.org/problem?id=1847 一个水题,用来熟悉熟悉spfa和floyd的. 题意:有m条的铁路,要从x,到y, 之后分别就是条铁路与其他铁路的交点.第一个输入的为有n ...

  9. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

随机推荐

  1. 转义字符\r \n \t \b 截图

  2. There are two different types of export, named and default

    export - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statemen ...

  3. php函数: set_include_path

    <?php $p =get_include_path(); $p.=PATH_SEPARATOR.'./bp/'; $p.=PATH_SEPARATOR.'./CLI/'; $p.=PATH_S ...

  4. Swift 学习笔记 (枚举)

    枚举为一种相关值定义了一个通用类型,从而可以让你在代码中类型安全的操作这些值. Swift中的枚举很灵活,不需要给每一个枚举中的成员都提供值.如果一个值(所谓 原时值) 要被提供给每一个枚举成员,那么 ...

  5. 我的Android进阶之旅------>Android图片处理(Matrix,ColorMatrix)

    本文转载于:http://www.cnblogs.com/leon19870907/articles/1978065.html 在编程中有时候需要对图片做特殊的处理,比如将图片做出黑白的,或者老照片的 ...

  6. PYTHON调用C接口(基于Ctypes)实现stein算法最大公约数的计算

    相关环境配置 mingw,选择相应的32位.64位的版本,主要用于编译动态链接库dll文件,可用vs替代,这里我选择轻量级的mingw windows64位地址:https://sourceforge ...

  7. LeetCode:划分字母区间【763】

    LeetCode:划分字母区间[763] 题目描述 字符串 S 由小写字母组成.我们要把这个字符串划分为尽可能多的片段,同一个字母只会出现在其中的一个片段.返回一个表示每个字符串片段的长度的列表. 示 ...

  8. java.sql.SQLException: Illegal connection port value '3306:success'

    严重: Servlet.service() for servlet jsp threw exceptionjava.sql.SQLException: Illegal connection port ...

  9. JVM 什么时候会full gc

    除直接调用System.gc外,触发Full GC执行的情况有如下四种.1. 旧生代空间不足旧生代空间只有在新生代对象转入及创建为大对象.大数组时才会出现不足的现象,当执行Full GC后空间仍然不足 ...

  10. Springboot2.0入门介绍

    Springboot目前已经得到了很广泛的应用,why这么牛逼? Springboot让你更容易上手,简单快捷的构建Spring的应用 Spring Boot让我们的Spring应用变的更轻量化.比如 ...