吉哥系列故事——礼尚往来

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1417    Accepted Submission(s): 733

Problem Description
  吉哥还是那个吉哥
  那个江湖人称“叽叽哥”的基哥
  
  每当节日来临,女友众多的叽叽哥总是能从全国各地的女友那里收到各种礼物。
  有礼物收到当然值得高兴,但回礼确是件麻烦的事!
  无论多麻烦,总不好意思收礼而不回礼,那也不是叽叽哥的风格。
  
  现在,即爱面子又抠门的叽叽哥想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!
  
  假设叽叽哥的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,叽叽哥可就摊上事了,摊上大事了......
  
  现在,叽叽哥想知道总共有多少种满足条件的回送礼物方案呢?
 
Input
输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100);
每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。
 
Output
请输出可能的方案数,因为方案数可能比较大,请将结果对10^9 + 7 取模后再输出。
每组输出占一行。
 
Sample Input
3
1
2
4
 
Sample Output
0
1
9
 
错排:考虑一个有 n 个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。
当 n 个编号元素放在 n个编号位置,元素编号与位置编号各不对应的方法数用 D(n)表示,那么D(n-1)就表示 n-1 个编号元素放在 n-1 个编号位置,各不对应的方法数,其它类推.
第一步,把第 n 个元素放在一个位置,比如位置 k,一共有 n-1 种方法;
第二步,放编号为 k 的元素,这时有两种情况:
⑴把它放到位置 n,那么,对于剩下的n-1 个元素,由于第 k 个元素放到了位置 n,剩下 n-2 个元素就有 D(n-2)种方法;
⑵第 k 个元素不把它放到位置 n,这时,对于这 n-1 个元素,有 D(n-1)种方法;
所以得到错排公式:f[i] = (i-1)*(f[i-1]+f[i-2])
#include<stdio.h>
#include<string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = ;
LL f[];
int main()
{
f[] =,f[]=;
for(int i=;i<=;i++){
f[i] = (f[i-]+f[i-])%mod*(i-)%mod;
}
int tcase;
scanf("%d",&tcase);
while(tcase--){
int n;
scanf("%d",&n);
printf("%lld\n",f[n]);
}
return ;
}

hdu 4535(排列组合之错排公式)的更多相关文章

  1. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  2. HDU 2048:神、上帝以及老天爷(错排公式,递推)

    神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  3. HDU 1465 不容易系列之一 (错排公式+容斥)

    题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...

  4. HDU——1465不容易系列之一(错排公式)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  5. HDU 2068 RPG错排 [错排公式]

    1.题意:1到N的序列的排列中,元素位置与元素值相对应的情况(值为i的元素在某个排列中正好排在第i个位置)大于等于序列规模一半的情况,有多少个? 2.输入输出:每组数据一个数,N,规定输入以0结尾: ...

  6. 【BZOJ】4517 [Sdoi2016]排列计数(数学+错排公式)

    题目 传送门:QWQ 分析 $ O(nlogn) $预处理出阶乘和阶乘的逆元,然后求组合数就成了$O(1)$了. 最后再套上错排公式:$ \huge d[i]=(i-1) \times (d[i-1] ...

  7. HDU——2068RPG的错排(错排公式)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  8. HDU 1465(错排公式)

    不容易系列之一 题意: 一个人要寄n个信封,结果装错了.信纸的编号为1到n,信封的编号为1到n,信纸的编号不能和信封的编号一样,全都不能一样. 思路:错排公式. D(n)表示n件信封装错的所有的情况. ...

  9. HDU 2068 RPG的错排(错排公式 + 具体解释)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. 基于django的个人博客网站建立(二)

    基于django的个人博客网站建立(二) 前言 网站效果可点击这里访问 今天主要完成后台管理员登录的状态以及关于文章在后台的处理 具体内容 首先接上一次内容,昨天只是完成了一个登录的跳转,其他信息并没 ...

  2. Python学习笔记(七)加密加盐

    MD5加密和加盐 Python的MD5加密 Python的hashlib模块的MD5加密,是比较简单一种加密,md5函数必须传入编译后的结果,否则会报错: Traceback (most recent ...

  3. Poj3061Subsequence

    A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, a ...

  4. VBA连接到SQL2008需要加上端口号

    VBA连接到SQL2008需要加上端口号1433,比如 conn = "server=XXXX.XXXX.XXXX.XXXX,1433;provider=SQLOLEDB.1;databas ...

  5. Centos7 使用 Supervisor 守护进程 Celery

    一.Supervisor 安装(centos7 还有另一个进程守护命令 Systemd ) Centos 7 安装 Supervisord 二.Supervisor 守护进程 Centos7 使用 S ...

  6. rest_framework序列化

    1.序列化 1)拿到queryset 2)将queryset 给序列化类 serializer = IdcSerializer(idc)    #单个对象 serializer = IdcSerial ...

  7. 数据库脚本开发日志模板 —— 项目需求 A

    前言: 在经历的几家公司的多个项目开发管理中,用 git 或者 svn来管理项目代码,都着重项目代码的管理,却疏于相应脚本的管理.本文可以参考,作为项目需求对应脚本开发记录文件(也建议用单个文件夹下放 ...

  8. 设计模式之迭代器模式 Iterator

    代码实现 public interface MyIterator { void first(); //将游标指向第一个元素 void next(); //将游标指向下一个元素 boolean hasN ...

  9. Leetcode 640.求解方程

    求解方程 求解一个给定的方程,将x以字符串"x=#value"的形式返回.该方程仅包含'+',' - '操作,变量 x 和其对应系数. 如果方程没有解,请返回"No so ...

  10. Python-伪私有属性

    原文:http://blog.itpub.net/26250550/viewspace-1411768/ 通常在 Python 中,我们都被告知可以使用双下划线开头的方法名定义方法来达到私有函数的目标 ...