Ordered Subsequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 464    Accepted Submission(s): 216

Problem Description
A numeric sequence of ai is ordered if a1<a2<……<aN. Let the subsequence of the given numeric sequence (a1, a2,……, aN) be any sequence (ai1, ai2,……, aiK), where 1<=i1<i2 <……<iK<=N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, eg. (1, 7), (3, 4, 8) and many others.

Your program, when given the numeric sequence, must find the number of its ordered subsequence with exact m numbers.

 
Input
Multi
test cases. Each case contain two lines. The first line contains two
integers n and m, n is the length of the sequence and m represent the
size of the subsequence you need to find. The second line contains the
elements of sequence - n integers in the range from 0 to 987654321 each.
Process to the end of file.
[Technical Specification]
1<=n<=10000
1<=m<=100
 
Output
For each case, output answer % 123456789.
 
Sample Input
3 2
1 1 2
7 3
1 7 3 5 9 4 8
 
Sample Output
2
12
 
题意:问在 长度为n的串中有多少个长度为 m 的上升子序列.
题解:dp[i][j]代表以第 i 个元素结尾,长度为 j 的子序列 的个数。那么 dp[i][j] = sum(dp[k][j-1]) (1<=k<j).
但是这样的话我们直接枚举是 O(n*n*m)这样的时间复杂度是接受不了的。所以求和的那一层用树状数组优化成 O(n*log(n)*m)
/**
状态转移方程:
dp[i][j] = sum(dp[k][j-1]) (1<=k<i&&a[k]<a[i])
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = ;
const int N = ;
const int M = ;
int cnt,n,m;
LL dp[N][M]; ///dp[i][j]代表第 i 个元素结尾,长度为 j 的递增子序列个数.
LL c[N],b[N],a[N]; LL lowbit(int i){
return i&(-i);
}
void update(int idx,int x,LL v){
for(int i=idx;i<=cnt;i+=lowbit(i)){
dp[i][x]=(dp[i][x]+v)%mod;
}
}
LL getsum(int idx,int x){
LL sum = ;
for(int i=idx;i>;i-=lowbit(i)){
sum=(sum+dp[i][x])%mod;
}
return sum;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
b[i] = a[i];
}
cnt = ;
for(int i=;i<=n;i++){ ///离散化 a 数组对应树状数组的 1 - cnt
if(b[i]!=b[i-]){
b[++cnt] = b[i];
}
}
sort(b+,b+cnt+);
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
int idx = lower_bound(b+,b++cnt,a[i])-b;
for(int j=;j<=m;j++){
LL v;
if(j == ) v = ;
else v = getsum(idx-,j-);
update(idx,j,v);
}
}
LL ans = getsum(cnt,m);
printf("%lld\n",ans);
}
return ;
}
    #include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define LL long long
const int mod=;
int n,m;
int a[];
int b[],cnt; inline void Add(int &a,int b){
a=(a+b)%mod;
}
inline int lowbit(int x){
return x&(-x);
}
int sum[][];
inline void add(int id,int x,int v){
while(x<=cnt){
Add(sum[id][x],v);
x+=lowbit(x);
}
}
inline int query(int id,int x){
int ans=;
while(x){
Add(ans,sum[id][x]);
x-=lowbit(x);
}
return ans;
} int main(){
while(~scanf("%d%d",&n,&m)){
cnt=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[++cnt]=a[i];
}
sort(b+,b+cnt+);
cnt=(int)(unique(b+,b++cnt)-(b+));
for(int i=;i<=n;i++)a[i]=(int)(lower_bound(b+,b++cnt,a[i])-b); memset(sum,,sizeof sum); int ans=;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(a[i]>){
int sum=query(j,a[i]-);
add(j+,a[i],sum);
}
}
add(,a[i],);
}
ans=query(m,cnt);
printf("%d\n",ans);
}
return ;
}

hdu 4991(树状数组+DP)的更多相关文章

  1. hdu 2227(树状数组+dp)

    Find the nondecreasing subsequences Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  3. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  4. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  5. 2018 CCPC网络赛 1010 hdu 6447 ( 树状数组优化dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6447 思路:很容易推得dp转移公式:dp[i][j] = max(dp[i][j-1],dp[i-1][j ...

  6. 【树状数组+dp】HDU 5542 The Battle of Chibi

    http://acm.hdu.edu.cn/showproblem.php?pid=5542 [题意] 给定长为n的序列,问有多少个长为m的严格上升子序列? [思路] dp[i][j]表示以a[i]结 ...

  7. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  8. hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  9. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

随机推荐

  1. PSTR、LPSTR等宏原型

    1.首先介绍char.wchar_t ,宽字符wchar_t和窄字符char. 窄字符char了,大家都很清楚,就是8bit表示的byte,长度固定.char字符只能表示ASII码表中的256个字符, ...

  2. Insertion Sort Gym - 101955C 思路+推公式

    题目:题目链接 题意:对长为n的1到n的数列的前k个数排序后数列的最长上升子序列长度不小于n-1的数列的种数,训练赛时怎么都读不明白这个题意,最后还是赛后问了旁队才算看懂,英语水平急需拯救55555 ...

  3. Android 适配器 自定义

    前言:最近看了几个开源项目,发现适配器这东西用的很多,一开始觉得这东西高大上,其实呢,感觉就是一个中转站,或者说是一个接口工具,将数据填充到一个视图中,几乎任何项目都会涉及到.所以今天也简单看了一下, ...

  4. 详细的Windows下安装 binwalk

    1. https://github.com/ReFirmLabs/binwalk到这里下载binwalk,下载后解压. 2. 找到下载后的文件夹, 在这里要进行安装步骤,一边按着shift,一边按着鼠 ...

  5. Python 3.6 性能测试框架Locust安装及使用

    背景 Python3.6 性能测试框架Locust的搭建与使用 基础 python版本:python3.6 开发工具:pycharm Locust的安装与配置 点击“File”→“setting” 点 ...

  6. LeetCode——Problem3:Longest Substring Without Repeating Characters

    哎哟我天啊.这道题快折磨死我了.刚开始连题都没看明白,就是不知道substring是什么意思.研究了好长时间才看出来的. 光辉历史呀...菜死了 1.题目 Given a string, find t ...

  7. FastDFS的安装(复制自己用)

    FastDFS 安装及使用 FastDFS 安装及使用 2012-11-17 13:10:31|  分类: Linux|举报|字号 订阅     Google了一下,流行的开源分布式文件系统有很多,介 ...

  8. ms sqlserver数据库主文件特别大怎么办

    因为项目中需要复制数据库,作为外网测试的数据库,但是数据库特别大,复制特别费劲,即使只复制主文件,主文件也特别大. 然后百度了下,发现数据库有个收缩功能,数据库右键——任务——收缩,可以对数据库进行收 ...

  9. oracle组合分区

    由于Interval分区是针对range的,11g-12.1版本,目前只有Interval—*一共3种Interval的复合分区 range-list方法: partition by range (u ...

  10. OOP & DOM

    OOP & DOM let Dom = Dom || {}; Dom = { checkValType(val) { let typeString = Object.prototype.toS ...