题目描述

最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益。另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k×Cij收益。经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?

输入

输入第一行为两个整数,分别为正整数N和M,分别表示区域的行数和列数;第2到N+1列,每行M个整数,表示商业区收益矩阵A;第N+2到2N+1列,每行M个整数,表示工业区收益矩阵B;第2N+2到3N+1行,每行M个整数,表示相邻额外收益矩阵C。第一行,两个整数,分别是n和m(1≤n,m≤100);

任何数字不超过1000”的限制

输出

输出只有一行,包含一个整数,为最大收益值。

样例输入

3 3
1 2 3
4 5 6
7 8 9
9 8 7
6 5 4
3 2 1
1 1 1
1 3 1
1 1 1

样例输出

81


题解

网络流最小割

只考虑相邻的两个,问题转化为:$i$和$j$各有两种选法:选择A可以获得$a_i$或$a_j$的收益;选择B可以获得$b_i$或$b_j$的收益;如果选择不同,则会获得$c_i+c_j$的收益。问最大收益。

这是一个经典的最小割模型,建图方法:S连向i,容量为$a_i$,i连向T,容量为b_i;S连向j,容量为$b_j$,i连向T,容量为$a_j$(这两步是反转源汇的过程)。i和j之间连容量为$c_i+c_j$的双向边。

因此总的建图为:黑白染色,黑点正常连,白点反转源汇,然后相邻的点之间连边。答案为$\sum\limits a_i+\sum\limits b_i+\sum\limits(c_i+c_j)-mincut$。

#include <queue>
#include <cstdio>
#include <cstring>
#define N 10010
#define M 1000010
#define pos(i , j) (i - 1) * m + j
using namespace std;
typedef long long ll;
const int inf = 1 << 30;
queue<int> q;
int n , m , head[N] , to[M] , next[M] , cnt = 1 , s , t , dis[N];
ll a[110][110] , b[110][110] , c[110][110] , val[M];
void add(int x , int y , ll z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
ll link(int x1 , int y1 , int x2 , int y2)
{
add(pos(x1 , y1) , pos(x2 , y2) , c[x1][y1] + c[x2][y2]);
add(pos(x2 , y2) , pos(x1 , y1) , c[x1][y1] + c[x2][y2]);
return c[x1][y1] + c[x2][y2];
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
ll dinic(int x , ll low)
{
if(x == t) return low;
ll temp = low , k;
int i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int i , j;
ll ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = n * m + 1;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &c[i][j]);
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= m ; j ++ )
{
ans += a[i][j] + b[i][j];
if((i & 1) ^ (j & 1)) add(s , pos(i , j) , b[i][j]) , add(pos(i , j) , t , a[i][j]);
else
{
add(s , pos(i , j) , a[i][j]) , add(pos(i , j) , t , b[i][j]);
if(i > 1) ans += link(i , j , i - 1 , j);
if(i < n) ans += link(i , j , i + 1 , j);
if(j > 1) ans += link(i , j , i , j - 1);
if(j < m) ans += link(i , j , i , j + 1);
}
}
}
while(bfs()) ans -= dinic(s , inf);
printf("%lld\n" , ans);
return 0;
}

【bzoj2132】圈地计划 网络流最小割的更多相关文章

  1. BZOJ2132 圈地计划 【最小割】

    题目 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解, 这块土地是一块矩形的区域,可以纵横划分 ...

  2. bzoj2132: 圈地计划(最小割)

    传送门 看来以后见到矩形就要黑白染色冷静一下了…… 首先,如果它的要求时候相邻的选择相同,那么就是和这一题一样了->这里 然后考虑不同的要怎么做 那就把矩形黑白染色一下吧 然后令其中一种颜色的A ...

  3. 【BZOJ2132】圈地计划(最小割)

    [BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...

  4. BZOJ 2132 圈地计划(最小割)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2132 题意:n*m的格子染色黑白,对于格子(i,j)染黑色则价值为A[i][j],白色为 ...

  5. bzoj 2132 圈地计划【最小割+dinic】

    对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...

  6. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  7. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  8. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

  9. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

随机推荐

  1. NOIP2018提高组Day2 解题报告

    前言 关于\(NOIP2018\),详见此博客:NOIP2018学军中学游记(11.09~11.11). \(Day2\)的题目和\(Day1\)比起来,真的是难了很多啊. \(T1\):旅行(点此看 ...

  2. 地理位置索引 2d索引

    地址位置索引:将一些点的位置存储在mongodb中,创建索引后,可以按照位置来查找其他点 子分类: .2d索引:平面地理位置索引,用于存储和查找平面上的点. .2dsphere索引:球面地理位置索引, ...

  3. LigerUi中表(Grid)控件的相关属性笔记

    http://blog.csdn.net/dxnn520/article/details/8216560 // ========================================= [每 ...

  4. 海量数据GPS定位数据库表设计

    在开发工业系统的数据采集功能相关的系统时,由于数据都是定时上传的,如每20秒上传一次的时间序列数据,这些数据在经过处理和计算后,变成了与时间轴有关的历史数据(与股票数据相似,如下图的车辆行驶过程中的油 ...

  5. 基于 muse-ui 封装一个微信公众号上传插件 实现多图上传

    Vue.component('my-wx-upload', { template: ` <mu-grid-list :cols="3" :cellHeight="9 ...

  6. A1043 Is It a Binary Search Tree (25 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  7. mysql update 多表关联更新

    UPDATE new_schedules_spider_static_schedule s join new_scac_port p on p.`PORT` = s.`PORT` and p.SCAC ...

  8. <Docker学习>1. 简介

    Q: Dokcer是什么? A: 是一种虚拟化技术.参考https://www.imooc.com/learn/867快速了解Docker. Q: 传统虚拟机技术和Dokcer的区别? A: 传统虚拟 ...

  9. 用django实现邮件发送

    settings配置 EMAIL_HOST = 'smtp.qq.com' # 如果是163换成stmp.163.com EMAIL_PORT = 465 # qq邮箱的端口 EMAIL_HOST_U ...

  10. 数论:HDU1066-Last non-zero Digit in N!

    题目: Last non-zero Digit in N! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...