题目描述

最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益。另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k×Cij收益。经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?

输入

输入第一行为两个整数,分别为正整数N和M,分别表示区域的行数和列数;第2到N+1列,每行M个整数,表示商业区收益矩阵A;第N+2到2N+1列,每行M个整数,表示工业区收益矩阵B;第2N+2到3N+1行,每行M个整数,表示相邻额外收益矩阵C。第一行,两个整数,分别是n和m(1≤n,m≤100);

任何数字不超过1000”的限制

输出

输出只有一行,包含一个整数,为最大收益值。

样例输入

3 3
1 2 3
4 5 6
7 8 9
9 8 7
6 5 4
3 2 1
1 1 1
1 3 1
1 1 1

样例输出

81


题解

网络流最小割

只考虑相邻的两个,问题转化为:$i$和$j$各有两种选法:选择A可以获得$a_i$或$a_j$的收益;选择B可以获得$b_i$或$b_j$的收益;如果选择不同,则会获得$c_i+c_j$的收益。问最大收益。

这是一个经典的最小割模型,建图方法:S连向i,容量为$a_i$,i连向T,容量为b_i;S连向j,容量为$b_j$,i连向T,容量为$a_j$(这两步是反转源汇的过程)。i和j之间连容量为$c_i+c_j$的双向边。

因此总的建图为:黑白染色,黑点正常连,白点反转源汇,然后相邻的点之间连边。答案为$\sum\limits a_i+\sum\limits b_i+\sum\limits(c_i+c_j)-mincut$。

#include <queue>
#include <cstdio>
#include <cstring>
#define N 10010
#define M 1000010
#define pos(i , j) (i - 1) * m + j
using namespace std;
typedef long long ll;
const int inf = 1 << 30;
queue<int> q;
int n , m , head[N] , to[M] , next[M] , cnt = 1 , s , t , dis[N];
ll a[110][110] , b[110][110] , c[110][110] , val[M];
void add(int x , int y , ll z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
ll link(int x1 , int y1 , int x2 , int y2)
{
add(pos(x1 , y1) , pos(x2 , y2) , c[x1][y1] + c[x2][y2]);
add(pos(x2 , y2) , pos(x1 , y1) , c[x1][y1] + c[x2][y2]);
return c[x1][y1] + c[x2][y2];
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
ll dinic(int x , ll low)
{
if(x == t) return low;
ll temp = low , k;
int i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int i , j;
ll ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = n * m + 1;
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= m ; j ++ ) scanf("%lld" , &c[i][j]);
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= m ; j ++ )
{
ans += a[i][j] + b[i][j];
if((i & 1) ^ (j & 1)) add(s , pos(i , j) , b[i][j]) , add(pos(i , j) , t , a[i][j]);
else
{
add(s , pos(i , j) , a[i][j]) , add(pos(i , j) , t , b[i][j]);
if(i > 1) ans += link(i , j , i - 1 , j);
if(i < n) ans += link(i , j , i + 1 , j);
if(j > 1) ans += link(i , j , i , j - 1);
if(j < m) ans += link(i , j , i , j + 1);
}
}
}
while(bfs()) ans -= dinic(s , inf);
printf("%lld\n" , ans);
return 0;
}

【bzoj2132】圈地计划 网络流最小割的更多相关文章

  1. BZOJ2132 圈地计划 【最小割】

    题目 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解, 这块土地是一块矩形的区域,可以纵横划分 ...

  2. bzoj2132: 圈地计划(最小割)

    传送门 看来以后见到矩形就要黑白染色冷静一下了…… 首先,如果它的要求时候相邻的选择相同,那么就是和这一题一样了->这里 然后考虑不同的要怎么做 那就把矩形黑白染色一下吧 然后令其中一种颜色的A ...

  3. 【BZOJ2132】圈地计划(最小割)

    [BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...

  4. BZOJ 2132 圈地计划(最小割)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2132 题意:n*m的格子染色黑白,对于格子(i,j)染黑色则价值为A[i][j],白色为 ...

  5. bzoj 2132 圈地计划【最小割+dinic】

    对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...

  6. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  7. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  8. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

  9. 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割

    题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...

随机推荐

  1. 动态规划专题(三)——数位DP

    前言 数位\(DP\) 真的是最恶心的\(DP\). 简介 看到那种给你两个数,让你求这两个数之间符合条件的数的个数,且这两个数非常大,这样的题目一般就是 数位\(DP\) 题. 数位\(DP\)一般 ...

  2. linux 查看帐号创建时间

    查看用户的home目录的创建时间 查看日志 用stat 命令,可以看到目录的三个时间.不过这个时间只是用来参考的,确定一个范围. 查看日志是最准确的方法 /var/log/auth.log ,前提是你 ...

  3. 【SQL】连接 —— 内连接、外连接、左连接、右连接、交叉连接

    连接 · 内连接 · 外连接 · 左连接 · 右连接 · 全连接 · 交叉连接 · 匹配符号(+)  连接  根据表之间的关系,呈现跨表查询的结果.     外连接     内连接 左连接 右连接 全 ...

  4. linux的一些指令

    linux的一些指令 █查看指令參數man 指令,如:man ls ,按q鍵退出 █查看文件列表ls -lht 按時間排序ll 列表ls 列表 目錄cd 目錄名稱 進入路徑cd .. 返回上層路徑 █ ...

  5. 白鹭引擎eui控件的简单创建和管理方法

    一.创建ui文件: 1. 创建exml文件,改成group类型,拖入default.res.json文件里面,文件类型改成text. 2. 将创建的exml文件拖入控件,控件可以在属性面板命名. 3. ...

  6. Vue源码学习一 ———— Vue项目目录

    Vue 目录结构 可以在 github 上通过这款 Chrome 插件 octotree 查看Vue的文件目录.也可以克隆到本地.. Vue 是如何规划目录的 scripts ------------ ...

  7. CSS的垂直居中和水平居中总结

    内联元素居中方案 水平居中设置: 行内元素 设置 text-align:center: Flex布局 设置display:flex;justify-content:center;(灵活运用) 垂直居中 ...

  8. 洛谷 3567/BZOJ 3524 Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 2895  Solved: 1189[Submit][S ...

  9. php扩展开发-变量

    我们在php中用到的变量,在底层的C语言代码里是一个结构体,由四个成员组成typedef struct _zval_struct { zvalue_value value; /* 变量的值,也是一个结 ...

  10. JZOJ 4307. 喝喝喝

    Description