pcm用来描述alsa中数字音频流。Alsa音频的播放/录制就是通过pcm来实现 的。

名词解释

声音是连续模拟量,计算机将它离散化之后用数字表示,就有了以下几个名词术语。

  • Frame. 帧是音频流中最小的单位,一段音频数据就是由苦干帧组成的。
  • Channel. 通道表示每帧数据中包含的通道数。单声道音频Mono含有  1个通道,立体声Stereo音频通常为2个通道。
  • Bit Depth. 位深,也叫采样精度,计算机对每个通道采样量化时数字比特位数,通常有16/24/32位。
  • Frames Per Second. 采样率表示每秒的采样帧数。常用的采样率如8KHz的人声,  44.1KHz的mp3音乐, 96Khz的蓝光音频。
  • Bits Per Second. 比特率表示每秒的比特数。

上面几个量有换算关系:比特率=采样率×通道数×位深. 下图是8K采样率下16bits/400Hz的单声道正弦波音频。pcm数据就是图上采样点幅值的16bit表示。

数据结构

snd_pcm结构用于表征一个PCM类型的snd_device.

struct snd_pcm {
struct snd_card *card; /* 指向所属的card设备 */
int device; /* device number */
struct snd_pcm_str streams[2]; /* 播放和录制两个数据流 */
wait_queue_head_t open_wait; /* 打开pcm设备时等待打开一个可获得的substream */
} struct snd_pcm_str {
int stream; /* stream (direction) */
struct snd_pcm *pcm; /* 指向所属的pcm设备 */
/* -- substreams -- */
unsigned int substream_count; /* 个数 */
unsigned int substream_opened; /* 在使用的个数 */
struct snd_pcm_substream *substream; /* 指向substream单链表 */
}

文件/proc/asound/cardX/pcmXp/info可以查看pcm的信息。一个pcm设备包含播 放/录制两个流,每个流有若干个substream.一个substream只能被一个进程占用。snd_pcm_substream才是真正实现音频的播放或录制的结构。

struct snd_pcm_substream {
struct snd_pcm *pcm;
struct snd_pcm_str *pstr;
void *private_data; /* copied from pcm->private_data */
int number;
char name[32]; /* substream name */
int stream; /* stream (direction) */ /* 录制/播放 */
struct pm_qos_request latency_pm_qos_req; /* pm_qos request */
size_t buffer_bytes_max; /* limit ring buffer size */
struct snd_dma_buffer dma_buffer;
unsigned int dma_buf_id;
size_t dma_max;
/* -- hardware operations -- */
const struct snd_pcm_ops *ops;
/* -- runtime information -- */
struct snd_pcm_runtime *runtime;
/* -- timer section -- */
struct snd_timer *timer; /* timer */
unsigned timer_running: 1; /* time is running */
/* -- next substream -- */
struct snd_pcm_substream *next;
/* -- linked substreams -- */
struct list_head link_list; /* linked list member */
struct snd_pcm_group self_group; /* fake group for non linked substream (with substream lock inside) */
struct snd_pcm_group *group; /* pointer to current group */
/* -- assigned files -- */
void *file; /* 指向 pcm_file, 不知道有什么用? */
int ref_count; /* 引用计数,打开 O_APPEND 时有用 */
atomic_t mmap_count; /* mmap 的引用计数 */
unsigned int f_flags; /* pcm 打开的文件标记 */
void (*pcm_release)(struct snd_pcm_substream *);
struct pid *pid; /* 所在进程的pid,有多个substream时用于选择使用哪个 */
/* misc flags */
unsigned int hw_opened: 1; /* 若已打开,在释放substream时需要调用close() */
};

文件/proc/asound/cardX/pcmXp/subX/info可以查看这个substream的信息。这 个结构里两个最重要的成员是runtimeops.

snd_pcm_ops是substream的操作方法集。

struct snd_pcm_ops {
int (*open)(struct snd_pcm_substream *substream); /* 必须实现 */
int (*close)(struct snd_pcm_substream *substream);
int (*ioctl)(struct snd_pcm_substream * substream,
unsigned int cmd, void *arg); /* 用于实现几个特定的IOCTL1_{RESET,INFO,CHANNEL_INFO,GSTATE,FIFO_SIZE} */
int (*hw_params)(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params); /* 用于设定pcm参数,如采样率/位深... */
int (*hw_free)(struct snd_pcm_substream *substream);
int (*prepare)(struct snd_pcm_substream *substream); /* 读写数据前的准备 */
int (*trigger)(struct snd_pcm_substream *substream, int cmd); /* 触发硬件对数据的启动/停止 */
snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream); /* 查询当前的硬件指针 */
int (*wall_clock)(struct snd_pcm_substream *substream,
struct timespec *audio_ts); /* 通过hw获得audio_tstamp */
int (*copy)(struct snd_pcm_substream *substream, int channel,
snd_pcm_uframes_t pos,
void __user *buf, snd_pcm_uframes_t count); /* 除dma外的hw自身实现的数据传输方法 */
int (*silence)(struct snd_pcm_substream *substream, int channel,
snd_pcm_uframes_t pos, snd_pcm_uframes_t count); /* hw静音数据的填充方法 */
struct page *(*page)(struct snd_pcm_substream *substream,
unsigned long offset); /* 硬件分配缓冲区的方法 */
int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma); /* */
int (*ack)(struct snd_pcm_substream *substream); /* 通知硬件写了一次数据 */
};

这些操作方法集由各种声卡如PCI,USB,SOC等子模块来实现。

snd_pcm_runtime用于表示substream运行时状态。

struct snd_pcm_runtime {
/* -- Status -- */ /* */ /* -- HW params -- */ /* 当前流的数据格式 */ /* -- SW params -- */ /* 用户配置的参数如pcm_config */ /* -- mmap -- */
struct snd_pcm_mmap_status *status; /* 当前硬件指针位置及其状态 */
struct snd_pcm_mmap_control *control; /* 当前的应用指针及其状态 */ /* -- locking / scheduling -- */ /* 用于通知如数据空闲/溢出等事件 */ /* -- private section -- */ /* -- hardware description -- */ /* 硬件支持的参数及参数之间的约束条件 */ /* -- interrupt callbacks -- */ /* HW一次中断传输完毕时的回调,似乎没有哪个模块用到它? */
void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
void (*transfer_ack_end)(struct snd_pcm_substream *substream); /* -- timer -- */ /* -- DMA -- */ struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
}

这是相当大的一个结构体,自带的注释很明晰,就不贴它的成员了。它反映了一个substream运行时的状态及实时信息。文件/proc/asound/*/subX/可以得到这个 结构的大部分信息。

PCM的状态转换

下图是PCM的状态的转换图。

XRUN状态之后,其它的状态大多都由用户空间的ioctl()显式的切换。 以TinyAlsa的播放音频流程为例。pcm_open()的对应的流程就是:

  1. open(pcm)后绑定一个substream,处于OPEN状态
  2. ioctl(SNDRV_PCM_IOCTL_SW_PARAMS)设定参数pcm_config.配置 runtime 的sw_para.切换到SETUP状态

Tinyalsa的pcm_wirte()流程:

  1. ioctl(SNDRV_PCM_IOCTL_PREPARE)后,substream切换到PREPARE状态。
  2. ioctl(SNDRV_PCM_IOCTL_WRITEI_FRAMES)后,substream切换到RUNNING状态。

TinyAlsa的pcm_mmap_write()流程:

  1. ioctl(SNDRV_PCM_IOCTL_PREPARE)后,substream切换到PREPARE状态。
  2. ioctl(SNDRV_PCM_IOCTL_START)后,substream切换到RUNNING状态。

TinyAlsa pcm_close流程:

  1. ioctl(SNDRV_PCM_IOCTL_DROP)后,切换回SETUP状态。
  2. close()之后,释放这个设备。

XRUN状态又分有两种,在播放时,用户空间没及时写数据导致缓冲区空了,硬件没有 可用数据播放导致UNDERRUN;录制时,用户空间没有及时读取数据导致缓冲区满后溢出, 硬件录制的数据没有空闲缓冲可写导致OVERRUN.

缓冲区的管理

音频的缓冲区是典型的只有一个读者和一个写者的FIFO结构。 下图是ALSA中FIFO缓冲区的示意图。

上图以播放时的缓冲管理为例,runtime->boundary一般都是较大的数,ALSA中默认接近LONG_MAX/2.这样FIFO的出队入队指针不是真实的缓冲区的地址偏移,经过转换才得到 物理缓冲的偏移。这样做的好处是简化了缓冲区的管理,只有在更新hw指针的时候才需 要换算到hw_ofs.

当用户空间由于系统繁忙等原因,导致hw_ptr>appl_ptr时,缓冲区已空,内核这里有两种方案:

  1. 停止DMA传输,进入XRUN状态。这是内核默认的处理方法。
  2. 继续播放缓冲区的重复的音频数据或静音数据。

用户空间配置stop_threshold可选择方案1或方案2,配置silence_threshold选择继 续播放的原有的音频数据还是静意数据了。个人经验,偶尔的系统繁忙导致的这种状态, 重复播放原有的音频数据会显得更平滑,效果更好。

实现

pcm的代码让人难以理解的部分莫过于硬件指针的更新snd_pcm_update_hw_ptr0(),分 析见这里。它是将hw_ofs转换成FIFO中hw_ptr的过程,同时处理环形缓冲区的回绕,没有中断,中断丢失等情况。

还有一处就是处理根据硬件参数的约束条件得到参数的代码snd_pcm_hw_refine(substream, params). 留待以后分析吧。

调试

sound/core/info.c是alsa为proc实现的接口。这也是用户空间来调试内核alsa最主要的方法了。打开内核配置选项CONFIG_SND_VERBOSE_PROCFS/CONFIG_SND_PCM_XRUN_DEBUG,可看到以下的目录树。

/proc/asound/
|-- card0
| |-- id 声卡名
| |-- pcm0c
| | |-- info pcm设备信息
| | |-- sub0
| | | |-- hw_params 硬件配置参数
| | | |-- info substream设备信息
| | | |-- status 实时的hw_ptr/appl_ptr
| | | `-- sw_params 软件配置参数
| | `-- xrun_debug 控制内核alsa的调试日志输出
| `-- pcm0p
|-- cards 内核拥有的声卡
|-- devices 内核所有的snd_device设备
|-- pcm 所有的pcm设备
`-- version alsa的版本号

在ALSA播放/录制异常时,若打开xrun_debug,内核日志会实时打印更多有用的信息, 往/proc/asound/card0/pcm0p/xrun_debug写入相应的掩码就好了。

#define XRUN_DEBUG_BASIC	(1<<0)
#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */

相当冗长的一篇总结。与其它内核模块比起来,这部分代码似乎显得更“晦涩”,原因 之一可能就是音频流是实时的数据,而内核本身不是实时的系统,软件上不能很好的保 证hw_ptr和appl_ptr的同步。

~EOF~

http://www.alivepea.me/kernel/alsa-pcm/

内核Alsa之pcm的更多相关文章

  1. Alsa中PCM参数设置⭐⭐

    1) PCM设备的句柄.2) 指定同时可供回放或截获的PCM流的方向3) 提供一些关于我们想要使用的设置选项的信息,比如缓冲区大小,采样率,PCM数据格式等4) 检查硬件是否支持设置选项.   4.1 ...

  2. Linux ALSA音频PCM播放编程

    使用ALSA播放两个频率的单音,并使用GNU Radio中的Audio Source和FFT来观测声音的频谱. #include <alsa/asoundlib.h> #include & ...

  3. 嵌入式开发之davinci--- 8148/8168/8127 中的alsa音频pcm g711 和aac 音频格式

    (1)alsa pcm (2)g711 (3)aac (4) --------------author:pkf -------------------time:2-4 ---------------- ...

  4. ALSA driver --PCM 实例创建过程

    前面已经写过PCM 实例的创建框架,我们现在来看看PCM 实例是如何创建的. 在调用snd_pcm_new时就会创建一个snd_pcm类型的PCM 实例. struct snd_pcm { struc ...

  5. ALSA 学习小记

    对于playback snd_pcm_begin snd_pcm_commit, 貌似 commit给的frame才会使得alsa去把数据填充 转自 http://magodo.github.io/ ...

  6. 【转】Alsa音频编程【精华】

    一.前序 这里了解一下各个参数的含义以及一些基本概念. 声音是连续模拟量,计算机将它离散化之后用数字表示,就有了以下几个名词术语. 样本长度(sample):样本是记录音频数据最基本的单位,计算机对每 ...

  7. Linux ALSA介绍

    1. 介绍 ALSA(即Advanced Linux Sound Architecture), 是目前Linux的主流音频体系结构, 提供了音频和MIDI的支持, 其架构图如下所示 TIP: 笔者的代 ...

  8. 36、ALSA声卡驱动和应用

    (注意:内核上电的时候会把一些没运行的控制器模块的时钟都关掉,所有在写驱动的时候需要在使用的使用使用clk_get和clk_enable使能时钟) (说明:与ALSA声卡对应的是OSS架构,第二期视频 ...

  9. Android的常用adb命令

    第一部分:1. ubuntu下配置环境anroid变量:在终端执行 sudo gedit /etc/profile 打开文本编辑器,在最后追加#setandroid environment2. 运行E ...

随机推荐

  1. Codefroces Gym101572 I.Import Spaghetti-有向图跑最小环输出路径(Floyd)

    暑假学的很多东西,现在都忘了,补这道题还要重新学一下floyd,有点难过,我暑假学的东西呢??? 好了,淡定,开始写题解. 这个题我是真的很难过啊,输入简直是有毒啊(内心已经画圈诅咒出题人无数次了.. ...

  2. Java中泛型的Class<Object>与Class<?>的区别(转)

    Object是一个具体的类名,而?是一个占位符号,表示任何类型,只要是SomeClass类或者子类就可以. List<Object>可以放任何类对象. List<? extends ...

  3. Geoserver跨域请求设置

    使用OpenLayers请求GeoServer发布的WFS服务时,如果不是相同的域可能会出现如下问题. 已拦截跨源请求:同源策略禁止读取位于 http://localhost:8080/geoserv ...

  4. Go -- etcd详解(转)

    CoreOS是一个基于Docker的轻量级容器化Linux发行版,专为大型数据中心而设计,旨在通过轻量的系统架构和灵活的应用程序部署能力简化数据中心的维护成本和复杂度.CoreOS作为Docker生态 ...

  5. [反汇编练习] 160个CrackMe之035

    [反汇编练习] 160个CrackMe之035. 本系列文章的目的是从一个没有任何经验的新手的角度(其实就是我自己),一步步尝试将160个CrackMe全部破解,如果可以,通过任何方式写出一个类似于注 ...

  6. [Algorithms] Queue & Priority Queue

    In this lesson, you will learn how to create a queue in JavaScript. A queue is a first-in, first-out ...

  7. mysql select last_insert_id()函数返回的值

    mysql)); 创建表j 插入数据 mysql> insert into j(name) values('wanggiqpg'); Query OK, row affected (0.00 s ...

  8. C#如何生成release版本的程序,生成debug版本的程序

    除了右击项目在生成中配置改成Release还要在顶部切换成Release                                  

  9. xgboost的SparkWithDataFrame版本实现

    再xgboost的源码中有xgboost的SparkWithDataFrame的实现,如下:https://github.com/dmlc/xgboost/tree/master/jvm-packag ...

  10. ListView 自己定义BaseAdapter实现单选打勾(无漏洞)

    (假设须要完整demo,请评论留下邮箱) (眼下源代码已经不发送.假设须要源代码,加qq316701116.不喜勿扰) 近期由于一个项目的原因须要自己定义一个BaseAdapter实现ListVIew ...