bzoj3209
首先这道题目不难想到将答案转化为这种形式
2^s[2]*3*s[3]*…max*s[max]
这时候我们要分类讨论,设n的二进制位数为t
当1~n中二进制位数小于t时
我们可以直接用组合的知识,二进制有i个1一共有c(t-1,i)
当1~n中二进制位数等于t时
我们数位统计一下即可,具体的当第i位为1时,(从右往左标)
后面i-1位01情况随意,即s[j+s]=s[j+s]+c(i-1,j) (s为到第i位n所含1的个数(不包括第i位),0<=j<=i-1)
当第i位为0,不管他……
最后用一下快速幂即可
const mo=; var c:array[..,..] of int64;
sum:array[..] of int64;
b:array[..] of int64;
i,j:longint;
n,s,p,t,ans:int64; function quick(x,y:int64):int64;
var i:longint;
m:int64; begin
m:=;
while x<> do
begin
inc(m);
b[m]:=x mod ;
x:=x div ;
end;
quick:=y;
for i:=m- downto do
begin
quick:=quick*quick mod mo;
if b[i]= then quick:=quick*y mod mo;
end;
end; begin
c[,]:=;
for i:= to do
begin
c[i,]:=;
c[i,i]:=;
for j:= to i- do
c[i,j]:=c[i-,j]+c[i-,j-];
end;
readln(n);
t:=trunc(ln(n)/ln())+;
for i:= to t- do
sum[i]:=c[t-,i];
t:=;
while n<> do
begin
inc(t);
b[t]:=n mod ;
n:=n div ;
end;
s:=;
for i:=t- downto do
if b[i]= then
begin
for j:= to i- do
sum[j+s]:=sum[j+s]+c[i-,j];
s:=s+;
end; sum[s]:=sum[s]+; //还有n这个数要统计
ans:=;
for i:= to t do
if sum[i]<> then
ans:=ans*quick(sum[i],i) mod mo;
writeln(ans);
end.
bzoj3209的更多相关文章
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- 【bzoj3209】: 花神的数论题 数论-DP
[bzoj3209]: 花神的数论题 首先二进制数中1的个数最多就是64个 设所有<=n的数里二进制中1的个数为i的有a[i]个 那么答案就是 然后快速幂 求a[i]可以用DP 设在二进制中从 ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
- BZOJ3209 花神的数论题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- 2018.10.27 bzoj3209: 花神的数论题(数位dp)
传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...
- 【bzoj3209】 花神的数论题
http://www.lydsy.com/JudgeOnline/problem.php?id=3209 (题目链接) 题意 ${sum(i)}$表示${i}$的二进制表示中${1}$的个数.求${\ ...
随机推荐
- JS时间戳
var timestamp1 = Date.parse(new Date()); var timestamp2 = Date.parse(new Date()); var times = timest ...
- Oracle REGEXP_INSTR 用法
原文出处 ORACLE中的支持正则表达式的函数主要有下面四个: 1,REGEXP_LIKE :与LIKE的功能相似 2,REGEXP_INSTR :与INSTR的功能相似 3,REG ...
- A题笔记(3)
No. 1381 容器相关 #include <vector> 头文件 vector<Presents> present; present.push_back(name); 向 ...
- 线性回顾-generalize issue
Ein的平均,Eout的平均 用这个平均来justify linear regresssion能够用的很好 noise level 资料里有多少的杂讯 等一下要证明的事情 predictions + ...
- SVM技法
PLA不管胖瘦,SVM喜欢胖的 fewer dichotomies=> small VC 演算法的VC dimension shatter 掉3个点 如果限制胖瘦,两个点都shatter不掉 喜 ...
- Angularjs简介
很久没有系统学习一个新技术了,angularjs将会比较系统的讲解这个技术的语法.应用.次类型的博客将会持续更新,博主也是一个初学者,如果有问题欢迎留言讨论. angularjs简介. angular ...
- Git (2)
要使用Git首先遇到的问题是怎么把文件加到库中. 很简单. 新建一个目录,然后git init. 完成上述工作之后的唯一改动是在当前目录下生成了一个.git的子目录.这个子目录是一个集中的数据库,包含 ...
- Python之练习Demo
遍历本地文件系统 (sys, os, path),例如写一个程序统计一个目录下所有文件大小并按各种条件排序并保存结果,代码如下: #coding:GBK import os; def SortList ...
- Burp Suite Walkthrough
Burp Suite is one of the best tools available for web application testing. Its wide variety of featu ...
- QTableView使用自定义委托(QItemDelegate)
需要在表格中绘制流程图,主要有箭头,方向,颜色,字符串,由于QTableView没有可用的绘制函数,所以需要自己去定义. 委托(delegate)继承QItemDelegate,模型(model)继承 ...