Dijkstra算法and Floyd算法 HDU 1874 畅通工程续
Dijkstra算法描述起来比较容易:它是求单源最短路径的,也就是求某一个点到其他各个点的最短路径,大体思想和prim算法差不多,有个数组dis,用来保存源点到其它各个点的距离,刚开始很好办,只需要把邻接矩阵里面它到其它点的距离复制过来就行了。剩下的步骤就是找到一个源点到其他点最小的距离,将它加入到已经确定下来的最短距离中,接着更新其他点到源点的距离,因为确定了一些点的最近距离之后,那么到其它未确定的点的距离可能会变小,所以更新一下。
理论完了 就要实践:http://acm.hdu.edu.cn/showproblem.php?pid=1874
AC代码:
#include<iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = ;
const int INFINITY = ;
int Map[N][N];
void init(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
Map[i][j] = INFINITY;
}
//v0代表源点,n是总数,dis数组表示到其他点的距离
void dijkstra(int v0, int n, int dis[])
{
//标记是否已经找到最短距离
bool Final[n];
memset(Final, false, sizeof(Final));
for (int i = ; i < n; i++)
dis[i] = Map[v0][i];
dis[v0] = ;
//源点已经找到
Final[v0] = true;
int min_dis;
for (int i = ; i < n; i++)
{
min_dis = INFINITY;//找剩下的所有点中最小的一个
int k = ;
for (int j = ; j < n; j++)
{
if (!Final[j] && dis[j] < min_dis)
{
min_dis = dis[j];
k = j;
}
}
//如果最小的存在,就将它标记已经找到最短距离
if (min_dis < INFINITY)
Final[k] = true;
else
break;//如果找不到最小的,就是不连通图
for (int j = ; j < n; j++)//更新其他点到它的距离
{
if (!Final[j] && min_dis + Map[k][j] < dis[j])
{
dis[j] = min_dis + Map[k][j];
}
}
}
}
int main()
{
int n, m;
while (~scanf("%d %d", &n, &m))
{
init(n);
int a, b, x;
for (int i = ; i < m; i++)
{
scanf("%d %d %d", &a, &b, &x);
//两个城市之间的道路可能有多条,取最小的那条
if (Map[a][b] > x)
Map[a][b] = Map[b][a] = x;
}
int s, e;
scanf("%d %d", &s, &e);
int ans[n];
dijkstra(s, n, ans);
if (ans[e] < INFINITY)
printf("%d\n", ans[e]);
else
puts("-1");
} return ;
}
如果求任意两点之间的最短距离的话,Dijkstra的时间复杂度是O(n^3),用Floyd的话也是O(n^3),但是代码更简洁,更稠密的图实际运行效率更快。它的主要思路就是:因为求任意两点之间的最短距离,那么它得用一个二维数组来实现,其实这个二位数组就可以用邻接矩阵来表示,刚开始是一个点到另外一个点的直接距离,直接距离就是指不经过第三个点可以的距离,算法的整个精髓就是,求点v->w的最短距离,用另外一个点来作为中间点,求v->u>w的距离,如果后者的距离小于前者的距离,就更新v->w的距离。代码一共三层for循环,第一层的意思就是除了这行这列的之外的任意两点之间的距离 通过这个点来作为中间点,一共n个点,所以循环n次,二三两层for循环是从第二个for循环里的点到第三个for循环里的点与通过中间点就行比较。核心代码如下:
void Floyd(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
for (int k = ; k < n; k++)
if (Map[j][i] + Map[i][k] < Map[j][k])
Map[j][k] = Map[j][i] + Map[i][k];
}
还是这个题,附AC代码:
#include<iostream>
#include <cstdio>
using namespace std;
const int N = ;
const int INFINITY = ;
int Map[N][N];
void init(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
if (i != j)
Map[i][j] = INFINITY;
}
void Floyd(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
for (int k = ; k < n; k++)
if (Map[j][i] + Map[i][k] < Map[j][k])
Map[j][k] = Map[j][i] + Map[i][k];
}
int main()
{
int n, m;
while (~scanf("%d %d", &n, &m))
{
init(n);
int a, b, x;
for (int i = ; i < m; i++)
{
scanf("%d %d %d", &a, &b, &x);
if (Map[a][b] > x)
{
Map[a][b] = Map[b][a] = x;
}
}
Floyd(n);
int s, e;
scanf("%d %d", &s, &e);
if (Map[s][e] < INFINITY)
printf("%d\n", Map[s][e]);
else
puts("-1");
} return ;
}
Dijkstra算法and Floyd算法 HDU 1874 畅通工程续的更多相关文章
- ACM: HDU 1874 畅通工程续-Dijkstra算法
HDU 1874 畅通工程续 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Desc ...
- HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题
参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上: 迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...
- HDU 1874畅通工程续(迪杰斯特拉算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Time Limit: 3000/1000 MS (Java/Others) ...
- hdu 1874 畅通工程续
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过 ...
- HDU 1874 畅通工程续【Floyd算法实现】
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 1874 畅通工程续(求最短距离,dijkstra,floyd)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************* ...
- hdu 1874 畅通工程续 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 题目分析:输入起点和终点,顶点的个数,已连通的边. 输出起点到终点的最短路径,若不存在,输出-1 ...
- hdu 1874 畅通工程续(迪杰斯特拉优先队列,floyd,spfa)
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- HDU 1874 畅通工程续(最短路/spfa Dijkstra 邻接矩阵+邻接表)
题目链接: 传送门 畅通工程续 Time Limit: 1000MS Memory Limit: 65536K Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路. ...
- HDU——1874畅通工程续(Dijkstra与SPFA)
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...
随机推荐
- 【BZOJ1010】玩具装箱
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- CentOS6.5 下 Mysql5.7主从复制
包下载http://url.cn/WrNg5S 主数据库:192.168.161.129 从数据库1:192.168.161.130 从数据库1:192.168.161.138 MySQL安装地址:/ ...
- (转载)最实用的清除浮动代码 css的文字过长裁剪后面跟着省略号
css: .clearfloat:after{display:block;clear:both;content:"";visibility:hidden;} .clearfloat ...
- Flowplayer-一款免费的WEB视频播放器 转 - helloweba.com
Flowplayer支持播放flv.swf等流媒体以及图片文件,能够非常流畅的播放视频文件,支持自定义配置和扩展. 1.加载flowplayer.js 在要播放视频的页面的head之间加入flowpl ...
- springmvc参数类型转换三种方式
SpringMVC绑定参数之类型转换有三种方式: 1. 实体类中加日期格式化注解 @DateTimeFormat(pattern="yyyy-MM-dd hh:MM&quo ...
- tomcat原理
1 - Tomcat Server的组成部分 1.1 - Server A Server element represents the entire Catalina servlet containe ...
- unwrap_uvw 笔记
<integer><Unwrap_UVW>.numberVerticesByNode <node>node --返回图顶点的对应于给定节点的Unwrap_UVW点总 ...
- 桌面小部件----LED电子时钟实现
桌面控件是通过 Broadcast 的形式来进行控制的,因此每个桌面控件都对应于一个BroadcastReceiver.为了简化桌面控件的开发,Android 系统提供了一个 AppWidgetPro ...
- 《简明python教程》学习笔记,长文
引号: 单引号:如果包含的字符串里有单引号的话,需要在那个单引号里加转义符号,或者使用双引号 例:print 'he"llo' or print 'he\'llo' ===> h ...
- 【转】android开发 dts、各种接口porting----不错
原文网址:http://www.xuebuyuan.com/1023185.html 1. repo init -u git://review.sonyericsson.net/platform/ma ...