Part I-An introduction to transactions

If you look at any introductory article or book on J2EE, you'll find only a small portion of the material devoted to the Java Transaction Service (JTS) or the Java Transaction API (JTA). This is not because JTS is an unimportant or optional portion of J2EE -- quite the opposite. JTS gets less press than EJB technology because the services it provides to the application are largely transparent -- many developers are not even aware of where transactions begin and end in their application. The obscurity of JTS is in some sense due to its own success: because it hides the details of transaction management so effectively, we don't hear or say very much about it. However, you probably want to understand what it's doing on your behalf behind the scenes.

It would not be an exaggeration to say that without transactions, writing reliable distributed applications would be almost impossible. Transactions allow us to modify the persistent state of an application in a controlled manner, so that our applications can be made robust to all sorts of system failures, including system crashes, network failures, power failures, and even natural disasters. Transactions are one of the basic building blocks needed to build fault-tolerant, highly reliable, and highly available applications.

The motivation for transactions

Imagine you are transferring money from one account to another. Each account balance is represented by a row in a database table. If you want to transfer funds from account A to account B, you will probably execute some SQL code that looks like this:

SELECT accountBalance INTO aBalance
FROM Accounts WHERE accountId=aId;
IF (aBalance >= transferAmount) THEN
UPDATE Accounts
SET accountBalance = accountBalance - transferAmount
WHERE accountId = aId;
UPDATE Accounts
SET accountBalance = accountBalance + transferAmount
WHERE accountId = bId;
INSERT INTO AccountJournal (accountId, amount)
VALUES (aId, -transferAmount);
INSERT INTO AccountJournal (accountId, amount)
VALUES (bId, transferAmount);
ELSE
FAIL "Insufficient funds in account";
END IF

So far, this code looks fairly straightforward. If A has sufficient funds on hand, money is subtracted from one account and added to another account. But what happens in the case of a power failure or system crash? The rows representing account A and account B are not likely to be stored in the same disk block, which means that more than one disk IO will be required to complete the transfer. What if the system fails after the first one is written, but before the second? Then money might have left A's account, but not shown up in B's account (neither A nor B will like this), or maybe money will show up in B's account, but not be debited from A's account (the bank won't like this.) Or what if the accounts are properly updated, but the account journal is not? Then the activities on A and B's monthly bank statement won't be consistent with their account balances.

Not only is it impossible to write multiple data blocks to disk simultaneously, but writing every data block to disk when any part of it changes would be bad for system performance. Deferring disk writes to a more opportune time can greatly improve application throughput, but it needs to be done in a manner that doesn't compromise data integrity.

Even in the absence of system failures, there is another risk worth discussing in the above code -- concurrency. What if A has $100 in his account, but initiates two transfers of $100 to two different accounts at the exact same time? If our timing is unlucky, without a suitable locking mechanism both transfers could succeed, leaving A with a negative balance.

These scenarios are quite plausible, and it is reasonable to expect enterprise data systems to cope with them. We expect banks to correctly maintain account records in the face of fires, floods, power failures, disk failures, and system failures. Fault tolerance can be provided by redundancy -- redundant disks, computers, and even data centers -- but it is transactions that make it practical to build fault-tolerant software applications. Transactions provide a framework for enforcing data consistency and integrity in the face of system or component failures.

 

Back to top

What is a transaction?

So what is a transaction, anyway? Before we define this term, first we will define the concept of application state. An application's state encompasses all of the in-memory and on-disk data items that affect the application's operation -- everything the application "knows." Application state may be stored in memory, in files, or in a database. In the event of a system failure -- for example, if the application, network, or computer system crashes -- we want to ensure that when the system is restarted, the application's state can be restored.

We can now define a transaction as a related collection of operations on the application state, which has the properties of atomicityconsistency,isolation, and durability. These properties are collectively referred to as ACID properties.

Atomicity means that either all of the transactions' operations are applied to the application state, or none of them are applied; the transaction is an indivisible unit of work.

Consistency means that the transaction represents a correct transformation of the application state -- that any integrity constraints implicit in the application are not violated by the transaction. In practice, the notion of consistency is application-specific. For example, in an accounting application, consistency would include the invariant that the sum of all asset accounts equal the sum of all liability accounts. We will return to this requirement when we discuss transaction demarcation in Part 3 of this series.

Isolation means that the effects of one transaction do not affect other transactions that are executing concurrently; from the perspective of a transaction, it appears that transactions execute sequentially rather than in parallel. In database systems, isolation is generally implemented using a locking mechanism. The isolation requirement is sometimes relaxed for certain transactions to yield better application performance.

Durability means that once a transaction successfully completes, changes to the application state will survive failures.

What do we mean by "survive failures?" What constitutes a survivable failure? This depends on the system, and a well-designed system will explicitly identify the faults from which it can recover. The transactional database running on my desktop workstation is robust to system crashes and power failures, but not to my office building burning down. A bank would likely not only have redundant disks, networks, and systems in its data center, but perhaps also have redundant data centers in separate cities connected by redundant communication links to allow for recovery from serious failures such as natural disasters. Data systems for the military might have even more stringent fault-tolerance requirements.

 

Back to top

Anatomy of a transaction

A typical transaction has several participants -- the application, the transaction processing monitor (TPM), and one or more resource managers (RMs). The RMs store the application state and are most often databases, but could also be message queue servers (in a J2EE application, these would be JMS providers) or other transactional resources. The TPM coordinates the activities of the RMs to ensure the all-or-nothing nature of the transaction.

A transaction begins when the application asks the container or transaction monitor to start a new transaction. As the application accesses various RMs, they are enlisted in the transaction. The RM must associate any changes to the application state with the transaction requesting the changes.

A transaction ends when one of two things happens: the transaction is committed by the application, or the transaction is rolled back either by the application or because one of the RMs failed. If the transaction successfully commits, changes associated with that transaction will be written to persistent storage and made visible to new transactions. If it is rolled back, all changes made by that transaction will be discarded; it will be as if the transaction never happened at all.

The transaction log -- the key to durability

Transactional RMs achieve durability with acceptable performance by summarizing the results of multiple transactions in a single transaction log. The transaction log is stored as a sequential disk file (or sometimes in a raw partition) and will generally only be written to, not read from, except in the case of rollback or recovery. In our bank account example, the balances associated with accounts A and B would be updated in memory, and the new and old balances would be written to the transaction log. Writing an update record to the transaction log requires less total data to be written to disk (only the data that has changed needs to be written, instead of the whole disk block) and fewer disk seeks (because all the changes can be contained in sequential disk blocks in the log.) Further, changes associated with multiple concurrent transactions can be combined into a single write to the transaction log, meaning that we can process multiple transactions per disk write, instead of requiring several disk writes per transaction. Later, the RM will update the actual disk blocks corresponding to the changed data.

Recovery upon restart

If the system fails, the first thing it does upon restart is to reapply the effects of any committed transactions that are present in the log but whose data blocks have not yet been updated. In this way, the log guarantees durability across failures, and also enables us to reduce the number of disk IO operations we perform, or at least defer them to a time when they will have a lesser impact on system performance.

Two-phase commit

Many transactions involve only a single RM -- usually a database. In this case, the RM generally does most of the work to commit or roll back the transaction. (Nearly all transactional RMs have their own transaction manager built in, which can handle local transactions -- transactions involving only that RM.) However, if a transaction involves two or more RMs -- maybe two separate databases, or a database and a JMS queue, or two separate JMS providers -- we want to make sure that the all-or-nothing semantics apply not only within the RM, but across all the RMs in the transaction. In this case, the TPM will orchestrate a two-phase commit. In a two-phase commit, the TPM first sends a "Prepare" message to each RM, asking if it is ready and able to commit the transaction; if it receives an affirmative reply from all RMs, it marks the transaction as committed in its own transaction log, and then instructs all the RMs to commit the transaction. If an RM fails, upon restart it will ask the TPM about the status of any transactions that were pending at the time of the failure, and either commit them or roll them back.

A societal analogy for the two-phase commit is the wedding ceremony -- the clergyman or judge first asks each party "Do you take this man/woman to be your husband/wife?" If both parties say yes, they are both declared to be married; otherwise, both remain unmarried. In no case does one party end up married while the other one doesn't, regardless of who says "I do" first.

 

Back to top

Transactions are an exception-handling mechanism

You may have observed that transactions offer many of the same features to application data that synchronized blocks do for in-memory data -- guarantees about atomicity, visibility of changes, and apparent ordering. But while synchronization is primarily a concurrency control mechanism, transactions are primarily an exception-handling mechanism. In a world where disks don't fail, systems and software don't crash, and power is 100 percent reliable, we wouldn't need transactions. Transactions perform the role in enterprise applications that contract law plays in society -- they specify how commitments are unwound if one party fails to live up to their part of the contract. When we write a contract, we generally hope that it is superfluous, and thankfully, most of the time it is.

An analogy to simpler Java programs would be that transactions offer some of the same advantages at the application level that catch andfinally blocks do at the method level; they allow us to perform reliable error recovery without writing lots of error recovery code. Consider this method, which copies one file to another:

public boolean copyFile(String inFile, String outFile) {
InputStream is = null;
OutputStream os = null;
byte[] buffer;
boolean success = true; try {
is = new FileInputStream(inFile);
os = new FileOutputStream(outFile);
buffer = new byte[is.available()];
is.read(buffer);
os.write(buffer);
}
catch {IOException e) {
success = false;
}
catch (OutOfMemoryError e) {
success = false;
}
finally {
if (is != null)
is.close();
if (os != null)
os.close();
} return success;
}

Ignoring the fact that allocating a single buffer for the entire file is a bad idea, what could go wrong in this method? A lot of things. The input file might not exist, or this user might not have permission to read it. The user might not have permission to write the output file, or it might be locked by another user. There might not be enough disk space to complete the file write operation, or allocating the buffer could fail if not enough memory is available. Fortunately, all of these are handled by the finally clause, which releases all the resources used by copyFile().

If you were writing this method in the bad old C days, for each operation (open input, open output, malloc, read, write) you would have to test the return status, and if the operation failed, undo all of the previous successful operations and return an appropriate status code. The code would be a lot bigger and therefore harder to read because of all the error-handling code. It is also very easy to make errors in the error-handling code (which also happens to be the hardest part to test) by either failing to free a resource, freeing a resource twice, or freeing a resource that hasn't yet been allocated. And with a more substantial method, which might involve more resources than just two files and a buffer, it gets even more complicated. It can become hard to find the actual program logic in all that error recovery code.

Now imagine you're performing a complicated operation that involves inserting or updating multiple rows in multiple databases, and one of the operations violates an integrity constraint and fails. If you were managing your own error recovery, you would have to keep track of which operations you've already performed, and how to undo each of them if a subsequent operation fails. It gets even more difficult if the unit of work is spread over multiple methods or components. Structuring your application with transactions lets you delegate all of this bookkeeping to the database -- just say ROLLBACK, and anything you've done since the start of the transaction is undone.

 

Back to top

Conclusion

By structuring our application with transactions, we define a set of correct transformations of the application state and ensure that the application is always in a correct state, even after a system or component failure. Transactions enable us to delegate many elements of exception handling and recovery to the TPM and the RMs, simplifying our code and freeing us to think about application logic instead.

In Part 2 of this series, we'll explore what this means for J2EE applications -- how J2EE allows us to impart transactional semantics to J2EE components (EJB components, servlets, and JSP pages); how it makes resource enlistment completely transparent to applications, even for bean-managed transactions; and how a single transaction can transparently follow the flow of control from one EJB component to another, or from a servlet to an EJB component, even across multiple systems.

Even though J2EE provides object transaction services relatively transparently, application designers still have to think carefully about where to demarcate transactions, and how we will use transactional resources in our application -- incorrect transaction demarcation can cause the application to be left in an inconsistent state, and incorrect use of transactional resources can cause serious performance problems. We will take up these issues and offer some advice on how to structure your transactions in Part 3 of this series.

Part II-The magic behind the scenes

In Part 1 of this series, we examined transactions and explored their basic properties -- atomicity, consistency, isolation, and durability. Transactions are the basic building blocks of enterprise applications; without them, it would be nearly impossible to build fault-tolerant enterprise applications. Fortunately, the Java Transaction Service (JTS) and the J2EE container do much of the work of managing transactions for you automatically, so you don't have to integrate transaction awareness directly into your component code. The result is almost a kind of magic -- by following a few simple rules, a J2EE application can automatically gain transactional semantics with little or no additional component code. This article aims to demystify some of this magic by showing how and where the transaction management occurs.

What is JTS?

JTS is a component transaction monitor. What does that mean? In Part 1, we introduced the concept of a transaction processing monitor (TPM), a program that coordinates the execution of distributed transactions on behalf of an application. TPMs have been around for almost as long as databases; IBM first developed CICS, which is still used today, in the late 1960s. Classic (or procedural) TPMs manage transactions defined procedurally as sequences of operations on transactional resources (such as databases). With the advent of distributed object protocols, such as CORBA, DCOM, and RMI, a more object-oriented view of transactions became desirable. Imparting transactional semantics to object-oriented components required an extension of the TPM model, in which transactions are instead defined in terms of invoking methods on transactional objects. JTS is just that: a component transaction monitor (sometimes called an object transaction monitor), or CTM.

The design of JTS and J2EE's transaction support was heavily influenced by the CORBA Object Transaction Service (OTS). In fact, JTS implements OTS and acts as an interface between the Java Transaction API, a low-level API for defining transaction boundaries, and OTS. Using OTS instead of inventing a new object transaction protocol builds upon existing standards and opens the way for compatibility between J2EE and CORBA components.

At first glance, the transition from procedural transaction monitors to CTMs seems to be only a change in terminology. However, the difference is more significant. When a transaction in a CTM commits or rolls back, all the changes made by the objects involved in the transaction are either committed or undone as a group. But how does a CTM know what the objects did during that transaction? Transactional components like EJB components don't have commit() or rollback() methods, nor do they register what they've done with the transaction monitor. So how do the actions performed by J2EE components become part of the transaction?

 

Back to top

Transparent resource enlistment

While the application state is manipulated by components, it is still stored in transactional resource managers (for example, databases and message queue servers), which can be registered as resource managers in a distributed transaction. In Part 1, we talked about how multiple resource managers can be enlisted in a single transaction, coordinated by a transaction manager. Resource managers know how to associate changes in application state with specific transactions.

But this just moves the focus of our question from the component to the resource manager -- how does the container figure out what resources are involved in the transaction so it can enlist them? Consider the following code, which might be found in a typical EJB session bean:

Listing 1. Transparent resource enlistment with bean-managed transactions
  InitialContext ic = new InitialContext();
UserTransaction ut = ejbContext.getUserTransaction();
ut.begin(); DataSource db1 = (DataSource) ic.lookup("java:comp/env/OrdersDB");
DataSource db2 = (DataSource) ic.lookup("java:comp/env/InventoryDB");
Connection con1 = db1.getConnection();
Connection con2 = db2.getConnection();
// perform updates to OrdersDB using connection con1
// perform updates to InventoryDB using connection con2
ut.commit();

Notice that there is no code in this example to enlist the JDBC connections in the current transaction -- the container does this for us. Let's look at how this happens.

Three types of resource managers

When an EJB component wants to access a database, a message queue server, or some other transactional resource, it acquires a connection to the resource manager (usually by using JNDI). Moreover, the J2EE specification only recognizes three types of transactional resources -- JDBC databases, JMS message queue servers, and "other transactional services accessed through JCA." Services in the latter class (such as ERP systems) must be accessed through JCA (the J2EE Connector Architecture). For each of these types of resources, either the container or the provider helps to enlist the resource into the transaction.

In Listing 1, con1 and con2 appear to be ordinary JDBC connections such as those that would be returned fromDriverManager.getConnection(). We get these connections from a JDBC DataSource, which was obtained by looking up the name of the data source in JNDI. The name used in our EJB component to find the data source (java:comp/env/OrdersDB) is specific to the component; theresource-ref section of the component's deployment descriptor maps it to the JNDI name of some application-wide DataSource managed by the container.

The hidden JDBC driver

Every J2EE container can create transaction-aware pooled DataSource objects, but the J2EE specification doesn't show you how, because it's outside the spec. If you browse the J2EE documentation, you won't find anything on how to create JDBC data sources. You'll have to look in the documentation for your container instead. Depending on your container, creating a data source might involve adding a data source definition to a property or configuration file, or might be done through a GUI administration tool.

Each container (or connection pool manager, like PoolMan) provides its own mechanism for creating a DataSource, and it is in this mechanism that the JTA magic is hidden. The connection pool manager obtains a Connection from the specified JDBC driver, but before returning it to the application, wraps it with a facade that also implements Connection, interposing itself between the application and the underlying connection. When the connection is created or a JDBC operation is performed, the wrapper asks the transaction manager if the current thread is executing in the context of a transaction, and automatically enlists the Connection in the transaction if one exists.

The other types of transactional resources, JMS message queues and JCA connectors, rely on a similar mechanism to hide resource enlistment from the user. When you make a JMS queue available to a J2EE application at deployment time, you again use a provider-specific mechanism to create the managed JMS objects (queue connection factories and destinations), which you then publish in a JNDI namespace. The managed objects created by the provider contain similar auto-enlistment code as the JDBC wrapper added by the container-supplied connection pool manager.

 

Back to top

Transparent transaction control

The two types of J2EE transactions -- container-managed and bean-managed -- differ in how they start and end a transaction. Where a transaction starts and ends is referred to as transaction demarcation. The example code in Listing 1 demonstrates a bean-managed transaction (sometimes called a programmatic transaction.) Bean-managed transactions are started and ended explicitly by a component using theUserTransaction class. UserTransaction is made available to EJB components through the ejbContext and to other J2EE components through JNDI.

Container-managed transactions (or declarative transactions) are started and ended transparently on behalf of the application by the container, based on transaction attributes in the component's deployment descriptor. You indicate whether an EJB component uses bean-managed or container-managed transactional support by setting the transaction-type attribute to either Container or Bean.

With container-managed transactions, you can assign transactional attributes at either the EJB class or method levels; you can specify a default set of transactional attributes for the EJB class, and you can also specify attributes for each method if different methods are to have different transactional semantics. These transactional attributes are specified in the container-transaction section of the assembly descriptor. An example assembly descriptor is shown in Listing 2. The supported values for the trans-attribute are:

  • Supports
  • Required
  • RequiresNew
  • Mandatory
  • NotSupported
  • Never

The trans-attribute determines if the method supports execution within a transaction, what action the container should take when the method is called within a transaction, and what action the container should take if it is called outside of a transaction. The most common container-managed transaction attribute is Required. When Required is set, a transaction in process will enlist your bean in that transaction, but if no transaction is running, the container will start one for you. We will investigate the differences between the various transaction attributes, and when you might want to use each, in Part 3 of this series.

Listing 2. Sample EJB assembly descriptor
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name>MyBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>MyBean</ejb-name>
<method-name>updateName</method-name>
</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>
...
</assembly-descriptor>

Powerful, but dangerous

Unlike the example in Listing 1, with declarative transaction demarcation there is no transaction management code in the component methods. Not only does this make the resulting component code easier to read (because it is not cluttered with transaction management code), but it has another, more significant advantage -- the transactional semantics of the component can be changed at application assembly time, without modifying or even accessing the source code for the component.

While being able to specify transaction demarcation separate from the code is a very powerful feature, making poor decisions at assembly time can render your application unstable or seriously impair its performance. The responsibility for correctly demarcating container-managed transactions is shared between the component developer and the application assembler. The component developer needs to provide sufficient documentation as to what the component does, so that the application deployer can make intelligent decisions on how to structure the application's transactions. The application assembler needs to understand how the components in the application interact, so that transactions can be demarcated in a way that enforces application consistency and doesn't impair performance. We'll discuss these issues in Part 3 of this series.

 

Back to top

Transparent transaction propagation

In either type of transaction, resource enlistment is transparent; the container automatically enlists any transactional resources used during the course of the transaction into the current transaction. This process extends not only to resources used by the transactional method, such as the database connections acquired in Listing 1, but also by methods it calls -- even remote methods. Let's take a look at how this happens.

The container associates transactions with threads

Let's say that methodA() of object A starts a transaction, and then calls methodB() of object B, which acquires a JDBC connection and updates the database. The connection acquired by B will be automatically enlisted in the transaction created by A. How did the container know to do this?

When a transaction is initiated, the transaction context is associated with the executing thread. When A creates the transaction, the thread in which A is executing is associated with that transaction. Because local method invocations execute in the same thread as the caller, any methods called by A will also be in the context of that transaction.

Skeletons in the closet

What if object B is really a stub to an EJB component executing in another thread or even another JVM? Amazingly, resources accessed by remote object B will still be enlisted in the current transaction. The EJB object stub (the part that executes in the context of the caller), the EJB protocol (RMI over IIOP), and the skeleton object on the remote end all conspire to make this happen transparently. The stub determines if the caller is executing a transaction. If so, the transaction ID, or Xid, is propagated to the remote object as part of the IIOP call along with the method parameters. (IIOP is the CORBA remote-invocation protocol, which provides for propagating various elements of execution context, such as transaction context and security context; see Resources for more information on RMI over IIOP.) If the call is part of a transaction, the skeleton object on the remote system automatically sets the remote thread's transaction context, so that when the actual remote method is invoked, it is already part of the transaction. (The stub and skeleton objects also take care of beginning and committing container-managed transactions.)

Transactions can be initiated by any J2EE component -- an EJB component, a servlet, or a JSP page (or an application client, if the container supports it). This means that your application can start a transaction in a servlet or JSP page when a request arrives, do some processing within the servlet or JSP page, access entity beans and session beans on multiple servers as part of the page's logic, and have all of this work be part of one transaction, transparently. Figure 1 demonstrates how the transaction context follows the path of execution from servlet to EJB to EJB.

 

Back to top

Optimizations

Having transactions be managed by the container allows the container to make certain optimization decisions for us. In Figure 1, we see a servlet and multiple EJB components access a database within the context of a single transaction. Each obtains a Connection to the database; it may well be the case that each is accessing the exact same database. JTS can detect whether multiple resources are involved in the transaction or not, even if multiple connections are made to the same resource from different components, and optimize the execution of the transaction. As you'll recall from Part 1, involving multiple resources managers in a single transaction requires the use of the two-phase commit protocol, which is more expensive than the single-phase commit used by a single resource manager. JTS is able to determine if only a single resource manager is enlisted in a transaction. If it detects that all the resources involved in the transaction are the same, it can skip the two-phase commit and let the resource manager handle the transaction by itself.

 

Back to top

Conclusion

The magic that allows for transparent transaction control, resource enlistment, and transaction propagation is not a part of JTS, but instead a part of how J2EE containers use JTA and JTS services behind the scenes on behalf of J2EE applications. There are many entities that conspire behind the scenes to make this magic happen transparently; the EJB stubs and skeletons, the JDBC driver wrappers provided by the container vendor, the JDBC drivers provided by the database vendor, the JMS providers, and the JCA connectors. All of these entities interact with the transaction manager so that your application code doesn't have to.

In Part 3, we'll look at some of the practical issues associated with managing transactions in a J2EE context -- transaction demarcation and isolation -- and their effects on application consistency, stability, and performance.

Part III-Balancing safety and performance

In Part 1 ("An introduction to transactions") and Part 2 ("The magic beind the scenes") of this series, we defined what a transaction is, enumerated the basic properties of transactions, and explored how Java Transaction Service and J2EE containers work together to provide transparent support for transactions to J2EE components. In this article, we'll take on the topic of transaction demarcation and isolation.

The responsibility for defining transaction demarcation and isolation attributes for EJB components lies with the application assembler. Setting these improperly can have serious consequences for the performance, scalability, or fault-tolerance of the application. Unfortunately, there are no hard-and-fast rules for setting these attributes properly, but there are some guidelines that can help us find a balance between concurrency hazards and performance hazards.

As we discussed in Part 1, transactions are primarily an exception-handling mechanism. Transactions serve a similar purpose in programs that legal contracts do in everyday business: they help us recover if something goes wrong. But because most of the time nothing actually goeswrong, we'd like to be able to minimize their cost and intrusion the rest of the time. How we use transactions in our applications can have a big effect on application performance and scalability.

Transaction demarcation

J2EE containers provide two mechanisms for defining where transactions begin and end: bean-managed transactions and container-managed transactions. In bean-managed transactions, you begin and end a transaction explicitly in the bean methods with UserTransaction.begin() andUserTransaction.commit(). Container-managed transactions, on the other hand, offer a lot more flexibility. By defining transactional attributes for each EJB method in the assembly descriptor, you can specify what the transactional requirements are for each method and let the container determine when to begin and end a transaction. In either case, the basic guidelines for structuring transactions are the same.

Get in, get out

The first rule of transaction demarcation is "Keep it short." Transactions provide concurrency control; this generally means that the resource manager will acquire locks on your behalf on data items you access during the course of a transaction, and it must hold them until the transaction ends. (Recall from the ACID properties discussed in Part 1 of this series that the "I" in "ACID" stands for "Isolation." That is, the effects of one transaction do not affect other transactions that are executing concurrently.) While you are holding locks, any other transaction that needs to access the data items you have locked will have to wait until you release the locks. If your transaction is very long, all those other transactions will be blocked, and your application throughput will plummet.

Rule 1: Keep transactions as short as possible.

By keeping transactions short, you minimize the time you are in the way of other transactions and thereby enhance your application's scalability. The best way to keep transactions as short as possible, of course, is not to do anything that is unnecessarily time consuming in the middle of a transaction, and in particular don't wait for user input in the middle of a transaction.

It may be tempting to begin a transaction, retrieve some data from a database, display the data, and then ask the user to make a choice while still in the transaction. Don't do this! Even if the user is paying attention, it will still take seconds to respond -- a long time to be holding locks in the database. And what if the user decided to step away from the computer, perhaps for lunch or even to go home for the day? The application will simply grind to a halt. Doing I/O during a transaction is a recipe for disaster.

Rule 2: Don't wait for user input during a transaction.

Group related operations together

Because each transaction has non-trivial overhead, you might think it's best to perform as many operations in a single transaction as possible to minimize the per-operation overhead. However, Rule 1 tells us that long transactions are bad for scalability. So how do we achieve a balance between minimizing per-operation overhead and scalability?

Taking Rule 1 to its logical extreme -- one operation per transaction -- would not only introduce additional overhead, but could also compromise the consistency of the application state. Transactional resource managers are supposed to maintain the consistency of the application state (recall from Part 1 that the "C" in "ACID" stands for "Consistency"), but they rely on the application to define what consistency means. In fact, the definition of consistency we used when describing transactions is somewhat circular: consistency means whatever the application says it is. The application organizes groups of changes to the application state into transactions, and the resulting application state is by definition consistent. The resource manager then ensures that if it has to recover from a failure, the application state is restored to the most recent consistent state.

In Part 1, we gave an example of transferring funds from one account to another in a banking application. Listing 1 shows a possible implementation of this in SQL, which contains five SQL operations (a select, two updates, and two inserts):

SELECT accountBalance INTO aBalance
FROM Accounts WHERE accountId=aId;
IF (aBalance >= transferAmount) THEN
UPDATE Accounts
SET accountBalance = accountBalance - transferAmount
WHERE accountId = aId;
UPDATE Accounts
SET accountBalance = accountBalance + transferAmount
WHERE accountId = bId;
INSERT INTO AccountJournal (accountId, amount)
VALUES (aId, -transferAmount);
INSERT INTO AccountJournal (accountId, amount)
VALUES (bId, transferAmount);
ELSE
FAIL "Insufficient funds in account";
END IF

What would happen if we executed this operation as five separate transactions? Not only would it be slower (because of the transaction overhead), but we would lose consistency as well. What would happen, for instance, if someone withdrew money from account A as part of a separate transaction between the execution of the first SELECT (checking the balance) and the subsequent debit UPDATE? This would violate a business rule that is supposed to be enforced by this code (that account balances should be non-negative). What if the system fails between the first UPDATE and the second? Now, when the system recovers, the money will have left account A but will not have been credited to account B, and there will be no record of why. This is not going to make the owners of either account very happy.

The five SQL operations in Listing 1 are part of a single related operation: transferring funds from one account to another. Therefore, we would want either all of them to execute or none of them to execute, suggesting that they should all be executed in a single transaction.

Rule 3: Group related operations into a single transaction.

The ideal balance

Rule 1 said transactions should be as short as possible. The example from Listing 1 shows that sometimes we have to group operations together into a transaction to maintain consistency. Of course, it depends on the application to determine what constitutes "related operations." We can combine Rules 1 and 3 to give a general guideline for describing the scope of a transaction, which we will state as Rule 4:

Rule 4: Group related operations into a single transaction, but put unrelated operations into separate transactions.

 

Back to top

Container-managed transactions

When we use container-managed transactions, instead of explicitly stating where transactions start and end, we define transactional requirements for each EJB method. The transaction mode is defined in the trans-attribute element of the container-transaction section of the bean's assembly-descriptor. (An example assembly-descriptor is shown in Listing 2.) The method's transaction mode, along with the state of whether the calling method is already enlisted in a transaction, determines which of several actions the container takes when an EJB method is called:

  • Enlist the method in an existing transaction.
  • Create a new transaction and enlist the method in it.
  • Do not enlist the method in any transaction.
  • Throw an exception.
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name>MyBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>MyBean</ejb-name>
<method-name>logError</method-name>
</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>
...
</assembly-descriptor>

The J2EE specification defines six transaction modes: RequiredRequiresNewMandatorySupportsNotSupported, and Never. Table 1 summarizes the behavior of each mode -- both when called in an existing transaction and when called while not in a transaction -- and describes which types of EJB components support each mode. (Some containers may permit you greater flexibility in choosing transaction modes, but such use would be relying on a container-specific feature and hence would not be portable across containers.)

Table 1. Transaction modes

Transaction mode Bean types Action when called in transaction T Action when called outside of a transaction
Required Session, Entity, Message-driven Enlist in T New transaction
RequiresNew Session, Entity New transaction New transaction
Supports Session, Message-driven Enlist in T Run without transaction
Mandatory Session, Entity Enlist in T Error
NotSupported Session, Message-driven Run without transaction Run without transaction
Never Session, Message-driven Error Run without transaction

In an application that uses only container-managed transactions, the only way a transaction will be started is if a component calls an EJB method whose transaction mode is Required or RequiresNew. When the container creates a transaction as a result of calling a transactional method, that transaction will be closed when the method completes. If the method returns normally, the container will commit the transaction (unless the application has asked for the transaction to be rolled back). If the method exits by throwing an exception, the container will roll back the transaction and propagate the exception. If a method is called in an existing transaction T and the transaction mode specifies that the method should be run without a transaction or run in a new transaction, transaction T is suspended until the method completes, and then the previous transaction T is resumed.

Choosing a transaction mode

So which mode should we choose for our bean methods? For session and message-driven beans, you will usually want to use Required to ensure that every call will be executed as part of a transaction, but will still allow the method to be a component of a larger transaction. Exercise care with RequiresNew; it should only be used when you are sure that the actions of your method should be committed separately from the actions of the method that called you. RequiresNew is typically used only with objects that have little or no relation to other objects in the system, such as logging objects. (Using RequiresNew with a logging object makes sense because you would want the log message to be committed regardless of whether the enclosing transaction commits.)

Using RequiresNew in an inappropriate manner can result in a situation similar to the one described above, where the code in Listing 1 was executed in five separate transactions instead of one, which can leave your application in an inconsistent state.

For CMP (container-managed persistence) entity beans, you will usually want to use RequiredMandatory is also a reasonable option, especially for initial development; this will alert you to cases where your entity bean methods are being called outside of a transaction, which may indicate a deployment error. You almost never want to use RequiresNew with CMP entity beans. NotSupported and Never are intended for nontransactional resources, such as adapters for foreign nontransactional systems or for transactional systems that cannot be enlisted in a Java Transaction API (JTA) transaction.

When EJB applications are properly designed, applying the above guidelines for transaction modes tends to naturally yield the transaction demarcation suggested by Rule 4. The reason is that J2EE architecture encourages decomposition of the application into the smallest convenient processing chunks, and each chunk is processed as an individual request (whether in the form of an HTTP request or as the result of a message being queued to a JMS queue).

 

Back to top

Isolation revisited

In Part 1, we defined isolation to mean that the effects of one transaction are not visible to other transactions executing concurrently; from the perspective of a transaction, it appears that transactions execute sequentially rather than in parallel. While transactional resource managers can often process many transactions simultaneously while providing the illusion of isolation, sometimes isolation constraints actually require that beginning a new transaction be deferred until an existing transaction completes. Since completing a transaction involves at least one synchronous disk I/O (to write to the transaction log), this could limit the number of transactions per second to something close to the number of disk writes per second, which would not be good for scalability.

In practice, it is common to relax the isolation requirements substantially to allow more transactions to execute concurrently and enable improved system response and greater scalability. Nearly all databases support four standard isolation levels: Read Uncommitted, Read Committed, Repeatable Read, and Serializable.

Unfortunately, managing isolation for container-managed transactions is currently outside the scope of the J2EE specification. However, many J2EE containers, such as IBM WebSphere and BEA WebLogic, provide container-specific extensions that allow you to set transaction isolation levels on a per-method basis in the same manner as transaction modes are set in the assembly-descriptor. For bean-managed transactions, you can set isolation levels via the JDBC or other resource manager connection.

To illustrate the differences between the isolation levels, let's first categorize several concurrency hazards -- cases where one transaction might interfere with another in the absence of suitable isolation. All of the following hazards have to do with the results of one transaction becomingvisible to a second transaction after the second transaction has already started:

  • Dirty Read: Occurs when the intermediate (uncommitted) results of one transaction are made visible to another transaction.
  • Unrepeatable Read: Occurs when one transaction reads a data item and subsequently rereads the same item and sees a different value.
  • Phantom Read: Occurs when one transaction performs a query that returns multiple rows, and later executes the same query again and sees additional rows that were not present the first time the query was executed.

The four standard isolation levels are related to these three isolation hazards, as shown in Table 2. The lowest isolation level, Read Uncommitted, provides no protection against changes made by other transactions, but is the fastest because it doesn't require contention for read locks. The highest isolation level, Serializable, is equivalent to the definition of isolation given above; each transaction appears to be fully isolated from the effects of other transactions.

Table 2. Transaction isolation levels

Isolation Level Dirty read Unrepeatable read Phantom read
Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

For most databases, the default isolation level is Read Committed, a good default choice because it prevents transactions from seeing an inconsistent view of the application data at any given point in the transaction. Read Committed is a good isolation level to use for most typical short transactions, such as when fetching data for reports or to be displayed to a user (perhaps as a result of a Web request), and for inserting new data into the database.

The higher isolation levels, Repeatable Read and Serializable, are suitable when you require a greater degree of consistency throughout the transaction, such as in the example of Listing 1, where you would want the account balance to stay the same from the time you check to ensure there are sufficient funds to the time you actually debit the account; this requires an isolation level of at least Repeatable Read. In cases where data consistency is absolutely essential, such as auditing an accounting database to make sure the sum of all debits and credits to an account equals its current balance, you would also need protection against new rows being created. This would be a case where you would need to use Serializable.

The lowest isolation level, Read Uncommitted, is rarely used. It is suitable for when you need only to obtain an approximate value, and the query would otherwise impose undesired performance overhead. A typical use for Read Uncommitted is when you want to estimate a rapidly varying quantity like the number of orders or the total dollar volume of orders placed today.

Because there is a substantial trade-off between isolation and scalability, you should exercise care in selecting an isolation level for your transactions. Selecting too low a level can be hazardous to your data. Selecting too high a level might be bad for performance, although at light loads it might not be. In general, data consistency problems are more serious than performance problems. If in doubt, you should err on the side of caution and choose a higher isolation level. And that brings us to Rule 5:

Rule 5: Use the lowest isolation level that keeps your data safe, but if in doubt, use Serializable.

Even if you are planning to initially err on the side of caution and hope that the resulting performance is acceptable (the performance management technique called "denial and prayer" -- probably the most commonly employed performance strategy, though most developers will not admit it), it pays to think about isolation requirements as you are developing your components. You should strive to write transactions that are tolerant of lower isolation levels where practical, so as not to paint yourself into a corner later on if performance becomes an issue. Because you need to know what a method is doing and what consistency assumptions are buried within it to correctly set the isolation level, it is also a good idea to carefully document concurrency requirements and assumptions during development, so as to assist in making correct decisions at application assembly time.

 

Back to top

Conclusion

Many of the guidelines offered in this article may appear somewhat contradictory, because issues such as transaction demarcation and isolation are inherently trade-offs. We're trying to balance safety (if we didn't care about safety, we wouldn't bother with transactions at all) against the performance overhead of the tools we're using to provide that margin of safety. The correct balance is going to depend on a host of factors, including the cost or damage associated with system failure or downtime and your organizational risk tolerance.

reference:

http://www.ibm.com/developerworks/library/j-jtp0305/

http://www.ibm.com/developerworks/library/j-jtp0410/

http://www.ibm.com/developerworks/library/j-jtp0514/

Understanding JTS--reference的更多相关文章

  1. Java theory and practice

    This content is part of the series: Java theory and practice A brief history of garbage collection A ...

  2. 理解 Objective-C 的 ARC

    英文原文:Understanding Automatic Reference Counting in Objective-C 自动引用计数(Automatic Reference Counting, ...

  3. Java.WeakReference-SoftReference-PhantomReference

    Weak Reference, Soft Reference, Phantom Reference 1. Introduction "Weak reference objects, whic ...

  4. xcode 手动管理内存 的相关知识点总结

    一.XCode4.2以后支持自动释放内存ARC xcode自4.2以后就支持自动释放内存了,但有时我们还是想手动管理内存,这如何处理呢. 很简单,想要取消自动释放,只要在  Build Setting ...

  5. Recover data from reference electrode via EEGLab 用EEGLab恢复参考电极数据

    The data of scanning reference electrode will not show initially. Here is a summary of recovering it ...

  6. Understanding the Internal Message Buffers of Storm

    Understanding the Internal Message Buffers of Storm Jun 21st, 2013 Table of Contents Internal messag ...

  7. [翻译]Understanding Weak References(理解弱引用)

    原文 Understanding Weak References Posted by enicholas on May 4, 2006 at 5:06 PM PDT 译文 我面试的这几个人怎么这么渣啊 ...

  8. Understanding CMS GC Logs--转载

    原文地址:https://blogs.oracle.com/poonam/entry/understanding_cms_gc_logs Understanding CMS GC Logs By Po ...

  9. Understanding G1 GC Logs--转载

    原文地址:https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs Understanding G1 GC Logs By Poon ...

  10. Gradle tip #2: understanding syntax

    In the Part 1 we talked about tasks and different stages of the build lifecycle. But after I publish ...

随机推荐

  1. JSP 结构

    网络服务器需要一个JSP引擎,也就是一个容器来处理JSP页面. 容器负责截获对JSP页面的请求.本教程使用内嵌JSP容器的Apache来支持JSP开发. JSP容器与Web服务器协同合作,为JSP的正 ...

  2. TMS IntraWeb 5.4.1.1 for XE6 (适配Intraweb14.0.32)

    文件夹内含有我自己已经编译好的bpl,仅供大家学习使用,请支持正版!!导入ParaInstalarXE6.groupproj后,逐个编译安装即可. 链接:http://pan.baidu.com/s/ ...

  3. Mongodb在Windows下安装及配置 【转】

    1.下载mongodb的windows版本,有32位和64位版本,根据系统情况下载,下载地址:http://www.mongodb.org/downloads 2.解压缩至E:/mongodb即可 3 ...

  4. OpenCV for c++Builder

    整理日: 20154/6 Borland C++BuilderでOpenCVを使う 確認 Turbo C++ 2007/03 1. ダウンロード&インストール http://sourcefor ...

  5. 初识Vim

    在Windows系统安装Vim后桌面上会添加gVim.gVim Easy.gVim Read-only 三个快捷方式. gVim 指向主程序,gVim Easy.gVim Read-only 也是,但 ...

  6. Dataguard配置前提条件

    Data Guard配置前提条件 配置Data Guard必须保证以下前提条件: 1.Data Guard是Oracle企业版的组件.Oracle标准版里没有这个控件.所以Data Guard配置所使 ...

  7. 【uva11374】Airport Express 最短路

    题意: 在Iokh市中,机场快线是市民从市内去机场的首选交通工具.机场快线分为经济线和商业线两种,线路,速度和价钱都不同.你有一张商业线车票,可以坐一站商业线,而其他时候只能乘坐经济线.假设换乘时间忽 ...

  8. C语言头文件的作用

    C99中规定, 所有顶层的默认存储类标志符都是extern ! 头文件中声明的函数,默认都是extern前缀.但是为了我们程序员方便,我们采取下面的手段: 我个人认为是extern催生了头文件的诞生. ...

  9. 大整数相乘的C实现

    //之前有个测试这个题没做完,现在把它做完,通过这个程序可以对乘法了解更深刻.分析:运用整数乘法,当然进制越高越好,考虑到乘法不要越界,故考虑进制底数N应该满 //足,N^2<2^32次方.所以 ...

  10. apk,task,android:process与android:sharedUserId的区别

    apk一般占一个dalvik,一个进程,一个task.通过设置也可以多个进程,占多个task. task是一个activity的栈,其中"可能"含有来自多个App的activity ...