http://www.cnblogs.com/wenruo/p/5304698.html

先看 Polya定理,Burnside引理回忆一下基础知识。总结的很棒。

一个置换就是集合到自身的一个双射,置换群就是元素为置换的群。

再看 Polya入门  涨涨姿势。

Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数。

Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1)+mC(π2)+mC(π3)+...+mC(πk)). 其中C(πk)为置换πk的循环节的个数。
 
代码:
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
} ll pow(ll x, ll n)
{
ll res = 1;
while (n) {
if (n & 1) res *= x;
x = x * x;
n >>= 1;
}
return res;
} ll polya(ll m, ll n)
{
ll ans = 0;
for (ll i = 0; i < n; ++i) {
ans += pow(m, gcd(n, i));
}
if (n & 1) ans += n * pow(m, n / 2 + 1);
else ans += (pow(m, n / 2) + pow(m, n / 2 + 1)) * n / 2; return ans / 2 / n;
}

优化后

ll pow(ll x, ll n)
{
ll res = 1;
while (n) {
if (n & 1) res = res * x % p;
x = x * x % p;
n >>= 1;
}
return res;
} ll eular(ll n)
{
ll res = 1;
for (ll i = 2; i * i <= n; ++i) {
if (n % i == 0) {
n /= i;
res = res * (i - 1);
while (n % i == 0) {
n /= i;
res = res * i;
}
}
}
if (n > 1) res = res * (n - 1);
return res % p;
} ll polya(int m, int n)
{
ll sum = 0;
ll i;
for (i = 1; i * i < n; ++i) {
if (n % i == 0) {
sum += eular(i) * pow(m, n / i) % p;
sum += eular(n / i) * pow(m, i) % p;
}
}
if (i * i == n) sum += eular(i) * pow(m, i) % p; return sum / n;
}

再优化一下欧拉函数

#define N 100000
int prime[N];
bool is_prime[N]; int sieve(int n)
{
int p = 0;
for (int i = 0; i <= n; ++i) is_prime[i] = true;
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime[p++] = i;
for (int j = 2 * i; j <= n; j += i)
is_prime[j] = false;
}
}
return p;
} int phi(int n)
{
int rea = n;
for(int i = 0; prime[i] * prime[i] <= n; i++)
{
if(n % prime[i] == 0)
{
rea = rea - rea / prime[i];
while (n % prime[i] == 0) n /= prime[i];
}
}
if(n > 1)
rea = rea - rea / n;
return rea;
} ll polya(int m, int n)
{
ll sum = 0;
ll i;
for (i = 1; i * i < n; ++i) {
if (n % i == 0) {
sum += phi(i) * pow(m, n / i);
sum += phi(n / i) * pow(m, i);
}
}
if (i * i == n) sum += phi(i) * pow(m, i);
if (n & 1) sum += n * pow(m, n / 2 + 1);
else sum += (pow(m, n / 2) + pow(m, n / 2 + 1)) * n / 2; return sum / 2 / n;
}

Polya定理的更多相关文章

  1. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  2. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

  3. [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)

    小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...

  4. HDU 3923 Invoker(polya定理+逆元)

    Invoker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Others)Total Su ...

  5. POJ 2409 Let it Bead(Polya定理)

    点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...

  6. POJ 1286 Necklace of Beads(Polya定理)

    点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...

  7. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  8. polya定理小结

    polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个 ...

  9. HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...

随机推荐

  1. 检测浏览器对HTML5和CSS3支持情况的利器——Modernizr

    Modernizr是什么? Modernizr 是一个用来检测浏览器功能支持情况的 JavaScript 库. 目前,通过检验浏览器对一系列测试的处理情况,Modernizr 可以检测18项 CSS3 ...

  2. hadoop2.4.0 安装配置 (2)

    hdfs-site.xml 配置如下: <?xml version="1.0" encoding="UTF-8"?> <?xml-styles ...

  3. linux下core文件调试方法

    http://www.cnblogs.com/li-hao/archive/2011/09/25/2190278.html 在程序不寻常退出时,内核会在当前工作目录下生成一个core文件(是一个内存映 ...

  4. HDU 2986 Ballot evaluation(精度问题)

    点我看题目 题意 : 给你n个人名,每个名后边跟着一个数,然后m个式子,判断是否正确. 思路 :算是一个模拟吧,但是要注意浮点数容易丢失精度,所以要好好处理精度,不知道多少人死在精度上,不过我实在是不 ...

  5. 【HDU 3038】 How Many Answers Are Wrong (带权并查集)

    How Many Answers Are Wrong Problem Description TT and FF are ... friends. Uh... very very good frien ...

  6. UVA 10896 Sending Email

    这个题目真是伤透脑筋了,一直RE,连着改了好几个版本,又是spfa,又是单调队列dijkstra+单调队列,总是不过,后来发现M开小了,双向边应该开m的两倍,悲剧啊!!!以后不管怎样,数组一定要尽量开 ...

  7. 实时时钟、系统时钟和CPU时钟的区别

    http://blog.sina.com.cn/s/blog_68f909c30100pli7.html 实时时钟:RTC时钟,用于提供年.月.日.时.分.秒和星期等的实时时间信息,由后备电池供电,当 ...

  8. javaweb学习总结(三十四)——使用JDBC处理MySQL大数据

    一.基本概念 大数据也称之为LOB(Large Objects),LOB又分为:clob和blob,clob用于存储大文本,blob用于存储二进制数据,例如图像.声音.二进制文等. 在实际开发中,有时 ...

  9. js中JSON对象和字符串对象相互转化

    JSON.stringify(value [, replacer] [, space]) //作用,将json数据转化为字符串value:是必须要的字段.就是你输入的对象,比如数组啊,类啊等等. re ...

  10. Linux IP 路由实现

    以下代码取自 kernel . [数据结构] 该结构被基于路由表的classifier使用,用于跟踪与一个标签(tag)相关联的路由流量的统计信息,该统计信息中包含字节数和报文数两类信息. 这个结构包 ...