Polya定理
http://www.cnblogs.com/wenruo/p/5304698.html
先看 Polya定理,Burnside引理回忆一下基础知识。总结的很棒。
一个置换就是集合到自身的一个双射,置换群就是元素为置换的群。
再看 Polya入门 涨涨姿势。
Burnside定理,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数。
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
} ll pow(ll x, ll n)
{
ll res = 1;
while (n) {
if (n & 1) res *= x;
x = x * x;
n >>= 1;
}
return res;
} ll polya(ll m, ll n)
{
ll ans = 0;
for (ll i = 0; i < n; ++i) {
ans += pow(m, gcd(n, i));
}
if (n & 1) ans += n * pow(m, n / 2 + 1);
else ans += (pow(m, n / 2) + pow(m, n / 2 + 1)) * n / 2; return ans / 2 / n;
}
优化后
ll pow(ll x, ll n)
{
ll res = 1;
while (n) {
if (n & 1) res = res * x % p;
x = x * x % p;
n >>= 1;
}
return res;
} ll eular(ll n)
{
ll res = 1;
for (ll i = 2; i * i <= n; ++i) {
if (n % i == 0) {
n /= i;
res = res * (i - 1);
while (n % i == 0) {
n /= i;
res = res * i;
}
}
}
if (n > 1) res = res * (n - 1);
return res % p;
} ll polya(int m, int n)
{
ll sum = 0;
ll i;
for (i = 1; i * i < n; ++i) {
if (n % i == 0) {
sum += eular(i) * pow(m, n / i) % p;
sum += eular(n / i) * pow(m, i) % p;
}
}
if (i * i == n) sum += eular(i) * pow(m, i) % p; return sum / n;
}
再优化一下欧拉函数
#define N 100000
int prime[N];
bool is_prime[N]; int sieve(int n)
{
int p = 0;
for (int i = 0; i <= n; ++i) is_prime[i] = true;
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime[p++] = i;
for (int j = 2 * i; j <= n; j += i)
is_prime[j] = false;
}
}
return p;
} int phi(int n)
{
int rea = n;
for(int i = 0; prime[i] * prime[i] <= n; i++)
{
if(n % prime[i] == 0)
{
rea = rea - rea / prime[i];
while (n % prime[i] == 0) n /= prime[i];
}
}
if(n > 1)
rea = rea - rea / n;
return rea;
} ll polya(int m, int n)
{
ll sum = 0;
ll i;
for (i = 1; i * i < n; ++i) {
if (n % i == 0) {
sum += phi(i) * pow(m, n / i);
sum += phi(n / i) * pow(m, i);
}
}
if (i * i == n) sum += phi(i) * pow(m, i);
if (n & 1) sum += n * pow(m, n / 2 + 1);
else sum += (pow(m, n / 2) + pow(m, n / 2 + 1)) * n / 2; return sum / 2 / n;
}
Polya定理的更多相关文章
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
- [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)
小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- POJ 2409 Let it Bead(Polya定理)
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...
- POJ 1286 Necklace of Beads(Polya定理)
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- polya定理小结
polya的精髓就在与对循环节的寻找,其中常遇到的问题就是项链染色类问题. 当项链旋转时有n种置换,循环节的个数分别是gcd(n, i); 当项链翻转时有n种置换,其中当项链珠子数位奇数时,循环节的个 ...
- HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...
随机推荐
- zoom 用法
from: http://www.jb51.net/css/40285.html 其实Zoom属性是IE浏览器的专有属性,Firefox等浏览器不支持.它可以设置或检索对象的缩放比例.除此之外,它还有 ...
- 异步IO模型和Overlapped结构
.NET中的 Overlapped 类 异步IO模型和Overlapped结构(http://blog.itpub.net/25897606/viewspace-705867/) 数据结构 OVERL ...
- java web第一个Servlet程序
Servlet 简介 . Java Servlet是和平台无关的服务器端组件,它运行在Serlet容器中.Servlet容器负责Servlet和客户的通信以及调用Servlet的方法,Servlet和 ...
- Sql狗血的Bit类型赋值与取值
Bit 数据类型在 SQL Server 数据库中以存储 1.0 进行存储. 往数据库中添加,修改 bit 类型的字段时,只能用 0 或者 1. 关于修改 Bit 类型的字段 1.若使用 SQL 语句 ...
- FZU 2140 Forever 0.5
Problem 2140 Forever 0.5 Accept: 36 Submit: 113 Special JudgeTime Limit: 1000 mSec Memory ...
- POJ 3308 Paratroopers(最小割EK)
题目链接 题意 : 有一个n*m的矩阵,L个伞兵可能落在某些点上,这些点的坐标已知,需要在某些位置安上一些枪,然后每个枪可以将一行或者一列的伞兵击毙.把这种枪安装到不同行的行首.或者不同列的列首,费用 ...
- 【Uva11212】 Editing a Book(IDA*)
[题意] 有n个数字的全排列,每次可以剪切一段粘贴到某个位置.问最后变成升序最少多少步. 如"{2,4,1,5,3,6}要2步 {3,4,5,1,2}只要一步 [分析] 迭代深搜真的AC了也 ...
- UAC新解(有非正常手段可以绕过)
360第一次注册是需要弹,可是以后就不弹了开机自启动不弹框,开机自启动不弹框 服务是system权限再说一句,一般程序也不需要过UAC系统启动项白名单.UAC有一个白名单机制.还有UAC也可以通过wu ...
- 让QT编译快一点(增加基础头文件)
姚冬,中老年程序员 进藤光.杨个毛.欧阳修 等人赞同 我是来反对楼上某些答案的.我曾经用MFC写了金山词霸(大约20多万行),又用Qt写了YY语音(大约100多万行),算是对两种框架都比较有经验.纠正 ...
- 上海CEC大收购(包括华大九天)
紫光收购展讯.锐迪科后,上海开始通过扶植CEC培育新势力,CEC已经收购上海澜起,即将收购amlogic.Ominivision,还在与marvell眉来眼去,此外华大九天已经移植上海,加上之前的上海 ...