题目大意:

给你两个串,有一个操作! 操作时可以把某个区间(L,R) 之间的所有字符变成同一个字符。现在给你两个串A,B要求最少的步骤把A串变成B串。
题目分析:
区间DP, 假如我们直接想把A变成B,那么我们DP区间的时候容易产生一个问题:假如我这个区间更新了,那么之前这个区间的子区间内DP出来的值就没用。
然后考虑到这里一直想不过去。最后看了看题解才知道.
我们可以先预处理一下怎么将一个空串变成B串需要的操作数。
这样我们就不用考虑子区间被覆盖的情况了。
如区间L,R
我们需要考虑的是点L是否需要单独刷一次。
如果需要单独刷一次那么就是:dp[L][R] = dp[L+1][R] + 1;
如果不需要单独刷,那么就是从一个点k刷到点L的时候顺便把L给刷掉。
那么我们就不用再占用刷的次数了。
 
故:if(b[L] == b[k])  dp[L][R] = min(dp[L][R], dp[L+1][k] + dp[k+1][R]);
因此我们dp[L][R] 保存的就是最小刷的次数了。
然后下面我们把答案枚举一下就行了。
 
============================================================================================
记忆化搜索
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL INF = 0xfffffff;
const LL maxn = ;
int dp[maxn][maxn], ans[maxn];
char a[maxn], b[maxn];
int DFS(int L,int R)
{
if(dp[L][R])
return dp[L][R];
if(L == R)
return dp[L][R] = ;
if(L > R)
return ;
dp[L][R] = DFS(L+,R) + ;
for(int k=L+; k<=R; k++)
{
if(b[L] == b[k])
dp[L][R] = min(dp[L][R], DFS(L+,k) + DFS(k+,R) );
}
return dp[L][R];
} int main()
{ while(cin >> a >> b)
{
memset(dp, , sizeof(dp));
int n = strlen(a);
for(int i=; i<n; i++)
DFS(, i); for(int i=; i <n; i++)
{
ans[i] = dp[][i];
if(a[i] == b[i])
ans[i] =i?ans[i-]:; for(int j=; j<i; j++)
ans[i] = min(ans[i], ans[j]+dp[j+][i]);
}
printf("%d\n", ans[n-]);
}
return ;
}

=========================================================================

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL INF = 0xfffffff;
const LL maxn = ;
int dp[maxn][maxn], ans[maxn];
char a[maxn], b[maxn]; int main()
{ while(cin >> a >> b)
{
memset(dp, , sizeof(dp));
int n = strlen(a); for(int len=; len<n; len++)
{
for(int i=; i+len<n; i++)
{
int j = i + len;
dp[i][j] = dp[i+][j] + ;
for(int k=i+; k<=j; k++)
{
if(b[i] == b[k])
{
dp[i][j] = min(dp[i][j], dp[i+][k] + dp[k+][j]);
}
}
}
} for(int i=; i <n; i++)
{
ans[i] = dp[][i];
if(a[i] == b[i])
ans[i] =i?ans[i-]:; for(int j=; j<i; j++)
ans[i] = min(ans[i], ans[j]+dp[j+][i]);
}
printf("%d\n", ans[n-]);
}
return ;
}

HDU 2476 String painter(记忆化搜索, DP)的更多相关文章

  1. hdu 2476 (string painter) ( 字符串刷子 区间DP)

    String painter Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. 记忆化搜索(DP+DFS) URAL 1183 Brackets Sequence

    题目传送门 /* 记忆化搜索(DP+DFS):dp[i][j] 表示第i到第j个字符,最少要加多少个括号 dp[x][x] = 1 一定要加一个括号:dp[x][y] = 0, x > y; 当 ...

  3. HDU 4597 Play Game (记忆化搜索博弈DP)

    题意 给出2*n个数,分两列放置,每列n个,现在alice和bob两个人依次从任意一列的对头或队尾哪一个数,alice先拿,且两个人都想拿最多,问alice最后能拿到数字总和的最大值是多少. 思路 4 ...

  4. HDU 1078 FatMouse and Cheese 记忆化搜索DP

    直接爆搜肯定超时,除非你加了某种凡人不能想出来的剪枝...555 因为老鼠的路径上的点满足是递增的,所以满足一定的拓补关系,可以利用动态规划求解 但是复杂的拓补关系无法简单的用循环实现,所以直接采取记 ...

  5. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  6. hdu 4960 记忆化搜索 DP

    Another OCD Patient Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  7. [HDU 1428]--漫步校园(记忆化搜索)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1428 漫步校园 Time Limit: 2000/1000 MS (Java/Others)    M ...

  8. HDU 4597 Play Game(记忆化搜索,深搜)

    题目 //传说中的记忆化搜索,好吧,就是用深搜//多做题吧,,这个解法是搜来的,蛮好理解的 //题目大意:给出两堆牌,只能从最上和最下取,然后两个人轮流取,都按照自己最优的策略,//问说第一个人对多的 ...

  9. 记忆化搜索 dp学习~2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1331 Function Run Fun Time Limit: 2000/1000 MS (Java/ ...

随机推荐

  1. java InputStream

    java InputStream 当为网络数据流是,不能以read为-1作为数据结束的尾. 而用下列案例获取数据. Log.v(TAG, "==========start========== ...

  2. 洛谷比赛 堕落的Joe

    /*暴力50*/ #include<iostream> #include<cstdio> #include<cstring> #define maxn 100010 ...

  3. Tomcat-java.lang.IllegalArgumentException: Document base F:apps does not exist or is not a readable

    启动Tomcat的时候,报错:java.lang.IllegalArgumentException: Document base F:apps does not exist or is not a r ...

  4. UTF-8和GBK有什么区别?

    字符均使用双字节来表示,只不过为区分中文,将其最高位都定成1. 至于UTF-8编码则是用以解决国际上字符的一种多字节编码,它对英文使用8位(即一个字节),中文使用24位(三个字节)来编码.对于英文字符 ...

  5. Ubuntu Server 14.04 下root无法ssh登陆

    今天安装了Ubuntu Server 14.04   在终端配置了root密码后,使用SecureCRT和putty竟然不能ssh登陆,SecureCRT一直提示密码不对,但是可以肯定输入的密码100 ...

  6. 远程推送,集成极光的SDK,证书制造

    由于iOS操作系统限制,我们APP在后台不能做操作,也不能接收任何数据,所以需要用推送来接收消息. APNs服务,苹果官方网址:https://developer.apple.com/library/ ...

  7. 用response输出一个验证码

    package servlet; import java.io.IOException; import java.io.PrintWriter; import javax.servlet.Servle ...

  8. 谈一下关于C++函数包装问题

    在C++中,我们经常遇到在某个特定的时刻,需要将函数进行包装调用,尤其是当我们需要将不同签名的函数放到同一个集合时,由于函数签名不一致导致我们不能直接将各式各样的函数指针放到诸如list这样的集合中, ...

  9. 明解C语言,练习13-3,从文件中读入个人信息,按身高排序后显示

    #include <stdio.h> #define NUMBER 6 #define F_PATH "D:\\C_C++\\ec13-3\\hw.dat" typed ...

  10. IOS DLNA PlatinumKit库的使用

    前段时间进行了IOS DLNA的开发,使用的是PlatinumKit库.网上查了很多资料都未果,经过自己的摸索,遂将如何使用PlatinumKit进行DLNA的开发分享给大家. 1.PlatinumK ...