We all know that the shortest path problem has optimal substructure. The reasoning is like below:

Supppose we have a path p from node u to v, another node t lies on path p: u->t->v ("->" means a path).

We claim that u->t is also a shortest path from u to t, and t->v is a shortest path from t to v.

Proof: if there is another path from u to t that is shorter than u->t, we can simply replace u->t with this shorter path in the solution of u->v, resulting in a shorter path than u->v, contradicting the fact that u->v is a shortest path from u to v.

But why can't we apply similar reasoning to the longest path problem? It's because in the longest path problem there are some constraints imposed on the solution. Suppose u->v is a longest path from u->v, node t lies on it.

So it's like u->t->v. If there is a longer path from u to t than u->t, if we cut off u->t from u->v and paste in the longer path, this new solution may fail some of the restrictions, for example, it may contains a cycle, which is invalid.

Why longest path problem doesn't have optimal substructure?的更多相关文章

  1. Solve Longest Path Problem in linear time

    We know that the longest path problem for general case belongs to the NP-hard category, so there is ...

  2. Eclipse 项目红色叹号:Build Path Problem

    Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...

  3. Codefroces Educational Round 27 845G Shortest Path Problem?

    Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...

  4. 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码

    00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...

  5. 以计算斐波那契数列为例说说动态规划算法(Dynamic Programming Algorithm Overlapping subproblems Optimal substructure Memoization Tabulation)

    动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划 ...

  6. Dynamic Programming | Set 2 (Optimal Substructure Property)

    正如我们在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 中讨论的那样,当一个问题具有以下2种性质时,建议使用动态规划来 ...

  7. [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others)    Mem ...

  8. poj3764 The XOR Longest Path【dfs】【Trie树】

    The xor-longest Path Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10038   Accepted:  ...

  9. 【CF edu 27 G. Shortest Path Problem?】

    time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...

随机推荐

  1. 使用ExpandableListView实现一个时光轴

    在许多App上都能看到时光轴的效果,比如携程等等,那么我们今天就利用ExpandableListView来实现一个时光轴效果,先来看看效果图: 效果还是挺简单的,这里我们主要是采用Expandable ...

  2. ZooKeeper应用场景

    一.数据发布与订阅(配置中心) 发布与订阅模型,即所谓的配置中心,顾名思义就是发布者将数据发布到ZK节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新.例如全局的配置信息,服务式服务框架 ...

  3. G方法的华丽升级

    ThinkPHP长期以来需要通过debug_start.debug_end方法甚至Debug类才能完成的功能,3.1版本中被一个简单的G方法取代了,不可不谓是一次华丽升级.G方法的作用包括标记位置和区 ...

  4. hibernate篇章六--demo(Hibernate之第1解之-hibernate_demo_1)

    准备工作做好了,开始Hibernate: 1:建立包:package:dao.model.service.util包: 2:开始model实体类Student:id,sname生成getter/set ...

  5. 如何创建windows xp 虚拟机

         如何创建windows xp 虚拟机 一.所需软件 1. VMware-workstation-full-12.0.0-2985596 赠送vm12 激活key一枚: 5A02H-AU243 ...

  6. pat_1014

    1014. 福尔摩斯的约会 (20) 时间限制 50 ms 内存限制 32000 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 大侦探福尔摩斯接到一张奇怪的字 ...

  7. c语言指针字符串与字符数组字符串的区别

    #include <stdio.h> int main() { //字符串常量,存放于内存常量区. //常量区区的内存具有缓存机制, //当不同指针指向的常量值相同时, //其实这些指针指 ...

  8. html表格 第五节

    表格: <html> <head> <title>表格实例</title> </head> <body> <center& ...

  9. LA 3177 Beijing Guards(二分法 贪心)

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  10. (转)Libevent(2)— event、event_base

    转自:http://name5566.com/4198.html 参考文献列表:http://www.wangafu.net/~nickm/libevent-book/ 此文编写的时候,使用到的 Li ...