【转载】zookeeper 分布式锁 实现
背景
继续上一篇文章:http://agapple.iteye.com/blog/1183972 ,项目中需要对分布式任务进行调度,那对应的分布式lock实现在所难免。
这一周,在基于BooleanMutex的基础上,实现了zookeeper的分布式锁,用于控制多进程+多线程的lock控制
算法
可以预先看一下zookeeper的官方文档:
- 首先为一个lock场景,在zookeeper中指定对应的一个根节点,用于记录资源竞争的内容
- 每个lock创建后,会lazy在zookeeper中创建一个node节点,表明对应的资源竞争标识。 (小技巧:node节点为EPHEMERAL_SEQUENTIAL,自增长的临时节点)
- 进行lock操作时,获取对应lock根节点下的所有字节点,也即处于竞争中的资源标识
- 按照Fair竞争的原则,按照对应的自增内容做排序,取出编号最小的一个节点做为lock的owner,判断自己的节点id是否就为owner id,如果是则返回,lock成功。
- 如果自己非owner id,按照排序的结果找到序号比自己前一位的id,关注它锁释放的操作(也就是exist watcher),形成一个链式的触发过程。
- 将自己id对应的节点删除即可,对应的下一个排队的节点就可以收到Watcher事件,从而被唤醒得到锁后退出
- node节点选择为EPHEMERAL_SEQUENTIAL很重要。 * 自增长的特性,可以方便构建一个基于Fair特性的锁,前一个节点唤醒后一个节点,形成一个链式的触发过程。可以有效的避免"惊群效应"(一个锁释放,所有等待的线程都被唤醒),有针对性的唤醒,提升性能。 * 选择一个EPHEMERAL临时节点的特性。因为和zookeeper交互是一个网络操作,不可控因素过多,比如网络断了,上一个节点释放锁的操作会失败。临时节点是和对应的session挂接的,session一旦超时或者异常退出其节点就会消失,类似于ReentrantLock中等待队列Thread的被中断处理。
- 获取lock操作是一个阻塞的操作,而对应的Watcher是一个异步事件,所以需要使用信号进行通知,正好使用上一篇文章中提到的BooleanMutex,可以比较方便的解决锁重入的问题。(锁重入可以理解为多次读操作,锁释放为写抢占操作)
- 使用EPHEMERAL会引出一个风险:在非正常情况下,网络延迟比较大会出现session timeout,zookeeper就会认为该client已关闭,从而销毁其id标示,竞争资源的下一个id就可以获取锁。这时可能会有两个process同时拿到锁在跑任务,所以设置好session timeout很重要。
- 同样使用PERSISTENT同样会存在一个死锁的风险,进程异常退出后,对应的竞争资源id一直没有删除,下一个id一直无法获取到锁对象。
代码
- public class DistributedLock {
- private static final byte[] data = { 0x12, 0x34 };
- private ZooKeeperx zookeeper = ZooKeeperClient.getInstance();
- private final String root; //根节点路径
- private String id;
- private LockNode idName;
- private String ownerId;
- private String lastChildId;
- private Throwable other = null;
- private KeeperException exception = null;
- private InterruptedException interrupt = null;
- public DistributedLock(String root) {
- this.root = root;
- ensureExists(root);
- }
- /**
- * 尝试获取锁操作,阻塞式可被中断
- */
- public void lock() throws InterruptedException, KeeperException {
- // 可能初始化的时候就失败了
- if (exception != null) {
- throw exception;
- }
- if (interrupt != null) {
- throw interrupt;
- }
- if (other != null) {
- throw new NestableRuntimeException(other);
- }
- if (isOwner()) {//锁重入
- return;
- }
- BooleanMutex mutex = new BooleanMutex();
- acquireLock(mutex);
- // 避免zookeeper重启后导致watcher丢失,会出现死锁使用了超时进行重试
- try {
- mutex.get(DEFAULT_TIMEOUT_PERIOD, TimeUnit.MICROSECONDS);// 阻塞等待值为true
- // mutex.get();
- } catch (TimeoutException e) {
- if (!mutex.state()) {
- lock();
- }
- }
- if (exception != null) {
- throw exception;
- }
- if (interrupt != null) {
- throw interrupt;
- }
- if (other != null) {
- throw new NestableRuntimeException(other);
- }
- }
- /**
- * 尝试获取锁对象, 不会阻塞
- *
- * @throws InterruptedException
- * @throws KeeperException
- */
- public boolean tryLock() throws KeeperException {
- // 可能初始化的时候就失败了
- if (exception != null) {
- throw exception;
- }
- if (isOwner()) {//锁重入
- return true;
- }
- acquireLock(null);
- if (exception != null) {
- throw exception;
- }
- if (interrupt != null) {
- Thread.currentThread().interrupt();
- }
- if (other != null) {
- throw new NestableRuntimeException(other);
- }
- return isOwner();
- }
- /**
- * 释放锁对象
- */
- public void unlock() throws KeeperException {
- if (id != null) {
- try {
- zookeeper.delete(root + "/" + id, -1);
- } catch (InterruptedException e) {
- Thread.currentThread().interrupt();
- } catch (KeeperException.NoNodeException e) {
- // do nothing
- } finally {
- id = null;
- }
- } else {
- //do nothing
- }
- }
- private void ensureExists(final String path) {
- try {
- Stat stat = zookeeper.exists(path, false);
- if (stat != null) {
- return;
- }
- zookeeper.create(path, data, CreateMode.PERSISTENT);
- } catch (KeeperException e) {
- exception = e;
- } catch (InterruptedException e) {
- Thread.currentThread().interrupt();
- interrupt = e;
- }
- }
- /**
- * 返回锁对象对应的path
- */
- public String getRoot() {
- return root;
- }
- /**
- * 判断当前是不是锁的owner
- */
- public boolean isOwner() {
- return id != null && ownerId != null && id.equals(ownerId);
- }
- /**
- * 返回当前的节点id
- */
- public String getId() {
- return this.id;
- }
- // ===================== helper method =============================
- /**
- * 执行lock操作,允许传递watch变量控制是否需要阻塞lock操作
- */
- private Boolean acquireLock(final BooleanMutex mutex) {
- try {
- do {
- if (id == null) {//构建当前lock的唯一标识
- long sessionId = zookeeper.getDelegate().getSessionId();
- String prefix = "x-" + sessionId + "-";
- //如果第一次,则创建一个节点
- String path = zookeeper.create(root + "/" + prefix, data,
- CreateMode.EPHEMERAL_SEQUENTIAL);
- int index = path.lastIndexOf("/");
- id = StringUtils.substring(path, index + 1);
- idName = new LockNode(id);
- }
- if (id != null) {
- List<String> names = zookeeper.getChildren(root, false);
- if (names.isEmpty()) {
- id = null;//异常情况,重新创建一个
- } else {
- //对节点进行排序
- SortedSet<LockNode> sortedNames = new TreeSet<LockNode>();
- for (String name : names) {
- sortedNames.add(new LockNode(name));
- }
- if (sortedNames.contains(idName) == false) {
- id = null;//清空为null,重新创建一个
- continue;
- }
- //将第一个节点做为ownerId
- ownerId = sortedNames.first().getName();
- if (mutex != null && isOwner()) {
- mutex.set(true);//直接更新状态,返回
- return true;
- } else if (mutex == null) {
- return isOwner();
- }
- SortedSet<LockNode> lessThanMe = sortedNames.headSet(idName);
- if (!lessThanMe.isEmpty()) {
- //关注一下排队在自己之前的最近的一个节点
- LockNode lastChildName = lessThanMe.last();
- lastChildId = lastChildName.getName();
- //异步watcher处理
- zookeeper.exists(root + "/" + lastChildId, new AsyncWatcher() {
- public void asyncProcess(WatchedEvent event) {
- acquireLock(mutex);
- }
- });
- if (stat == null) {
- acquireLock(mutex);// 如果节点不存在,需要自己重新触发一下,watcher不会被挂上去
- }
- } else {
- if (isOwner()) {
- mutex.set(true);
- } else {
- id = null;// 可能自己的节点已超时挂了,所以id和ownerId不相同
- }
- }
- }
- }
- } while (id == null);
- } catch (KeeperException e) {
- exception = e;
- if (mutex != null) {
- mutex.set(true);
- }
- } catch (InterruptedException e) {
- interrupt = e;
- if (mutex != null) {
- mutex.set(true);
- }
- } catch (Throwable e) {
- other = e;
- if (mutex != null) {
- mutex.set(true);
- }
- }
- if (isOwner() && mutex != null) {
- mutex.set(true);
- }
- return Boolean.FALSE;
- }
- }
public class DistributedLock { private static final byte[] data = { 0x12, 0x34 };
private ZooKeeperx zookeeper = ZooKeeperClient.getInstance();
private final String root; //根节点路径
private String id;
private LockNode idName;
private String ownerId;
private String lastChildId;
private Throwable other = null;
private KeeperException exception = null;
private InterruptedException interrupt = null; public DistributedLock(String root) {
this.root = root;
ensureExists(root);
} /**
* 尝试获取锁操作,阻塞式可被中断
*/
public void lock() throws InterruptedException, KeeperException {
// 可能初始化的时候就失败了
if (exception != null) {
throw exception;
} if (interrupt != null) {
throw interrupt;
} if (other != null) {
throw new NestableRuntimeException(other);
} if (isOwner()) {//锁重入
return;
} BooleanMutex mutex = new BooleanMutex();
acquireLock(mutex);
// 避免zookeeper重启后导致watcher丢失,会出现死锁使用了超时进行重试
try {
mutex.get(DEFAULT_TIMEOUT_PERIOD, TimeUnit.MICROSECONDS);// 阻塞等待值为true
// mutex.get();
} catch (TimeoutException e) {
if (!mutex.state()) {
lock();
}
} if (exception != null) {
throw exception;
} if (interrupt != null) {
throw interrupt;
} if (other != null) {
throw new NestableRuntimeException(other);
}
} /**
* 尝试获取锁对象, 不会阻塞
*
* @throws InterruptedException
* @throws KeeperException
*/
public boolean tryLock() throws KeeperException {
// 可能初始化的时候就失败了
if (exception != null) {
throw exception;
} if (isOwner()) {//锁重入
return true;
} acquireLock(null); if (exception != null) {
throw exception;
} if (interrupt != null) {
Thread.currentThread().interrupt();
} if (other != null) {
throw new NestableRuntimeException(other);
} return isOwner();
} /**
* 释放锁对象
*/
public void unlock() throws KeeperException {
if (id != null) {
try {
zookeeper.delete(root + "/" + id, -1);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} catch (KeeperException.NoNodeException e) {
// do nothing
} finally {
id = null;
}
} else {
//do nothing
}
} private void ensureExists(final String path) {
try {
Stat stat = zookeeper.exists(path, false);
if (stat != null) {
return;
} zookeeper.create(path, data, CreateMode.PERSISTENT);
} catch (KeeperException e) {
exception = e;
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
interrupt = e;
}
} /**
* 返回锁对象对应的path
*/
public String getRoot() {
return root;
} /**
* 判断当前是不是锁的owner
*/
public boolean isOwner() {
return id != null && ownerId != null && id.equals(ownerId);
} /**
* 返回当前的节点id
*/
public String getId() {
return this.id;
} // ===================== helper method ============================= /**
* 执行lock操作,允许传递watch变量控制是否需要阻塞lock操作
*/
private Boolean acquireLock(final BooleanMutex mutex) {
try {
do {
if (id == null) {//构建当前lock的唯一标识
long sessionId = zookeeper.getDelegate().getSessionId();
String prefix = "x-" + sessionId + "-";
//如果第一次,则创建一个节点
String path = zookeeper.create(root + "/" + prefix, data,
CreateMode.EPHEMERAL_SEQUENTIAL);
int index = path.lastIndexOf("/");
id = StringUtils.substring(path, index + 1);
idName = new LockNode(id);
} if (id != null) {
List<String> names = zookeeper.getChildren(root, false);
if (names.isEmpty()) {
id = null;//异常情况,重新创建一个
} else {
//对节点进行排序
SortedSet<LockNode> sortedNames = new TreeSet<LockNode>();
for (String name : names) {
sortedNames.add(new LockNode(name));
} if (sortedNames.contains(idName) == false) {
id = null;//清空为null,重新创建一个
continue;
} //将第一个节点做为ownerId
ownerId = sortedNames.first().getName();
if (mutex != null && isOwner()) {
mutex.set(true);//直接更新状态,返回
return true;
} else if (mutex == null) {
return isOwner();
} SortedSet<LockNode> lessThanMe = sortedNames.headSet(idName);
if (!lessThanMe.isEmpty()) {
//关注一下排队在自己之前的最近的一个节点
LockNode lastChildName = lessThanMe.last();
lastChildId = lastChildName.getName();
//异步watcher处理
zookeeper.exists(root + "/" + lastChildId, new AsyncWatcher() { public void asyncProcess(WatchedEvent event) {
acquireLock(mutex);
} }); if (stat == null) {
acquireLock(mutex);// 如果节点不存在,需要自己重新触发一下,watcher不会被挂上去
}
} else {
if (isOwner()) {
mutex.set(true);
} else {
id = null;// 可能自己的节点已超时挂了,所以id和ownerId不相同
}
}
}
}
} while (id == null);
} catch (KeeperException e) {
exception = e;
if (mutex != null) {
mutex.set(true);
}
} catch (InterruptedException e) {
interrupt = e;
if (mutex != null) {
mutex.set(true);
}
} catch (Throwable e) {
other = e;
if (mutex != null) {
mutex.set(true);
}
} if (isOwner() && mutex != null) {
mutex.set(true);
}
return Boolean.FALSE;
}
}
相关说明:
测试代码:
- @Test
- public void test_lock() {
- ExecutorService exeucotr = Executors.newCachedThreadPool();
- final int count = 50;
- final CountDownLatch latch = new CountDownLatch(count);
- final DistributedLock[] nodes = new DistributedLock[count];
- for (int i = 0; i < count; i++) {
- final DistributedLock node = new DistributedLock(dir);
- nodes[i] = node;
- exeucotr.submit(new Runnable() {
- public void run() {
- try {
- Thread.sleep(1000);
- node.lock(); //获取锁
- Thread.sleep(100 + RandomUtils.nextInt(100));
- System.out.println("id: " + node.getId() + " is leader: " + node.isOwner());
- } catch (InterruptedException e) {
- want.fail();
- } catch (KeeperException e) {
- want.fail();
- } finally {
- latch.countDown();
- try {
- node.unlock();
- } catch (KeeperException e) {
- want.fail();
- }
- }
- }
- });
- }
- try {
- latch.await();
- } catch (InterruptedException e) {
- want.fail();
- }
- exeucotr.shutdown();
- }
@Test
public void test_lock() {
ExecutorService exeucotr = Executors.newCachedThreadPool();
final int count = 50;
final CountDownLatch latch = new CountDownLatch(count);
final DistributedLock[] nodes = new DistributedLock[count];
for (int i = 0; i < count; i++) {
final DistributedLock node = new DistributedLock(dir);
nodes[i] = node;
exeucotr.submit(new Runnable() { public void run() {
try {
Thread.sleep(1000);
node.lock(); //获取锁
Thread.sleep(100 + RandomUtils.nextInt(100)); System.out.println("id: " + node.getId() + " is leader: " + node.isOwner());
} catch (InterruptedException e) {
want.fail();
} catch (KeeperException e) {
want.fail();
} finally {
latch.countDown();
try {
node.unlock();
} catch (KeeperException e) {
want.fail();
}
} }
});
} try {
latch.await();
} catch (InterruptedException e) {
want.fail();
} exeucotr.shutdown();
}
升级版
实现了一个分布式lock后,可以解决多进程之间的同步问题,但设计多线程+多进程的lock控制需求,单jvm中每个线程都和zookeeper进行网络交互成本就有点高了,所以基于DistributedLock,实现了一个分布式二层锁。
大致原理就是ReentrantLock 和 DistributedLock的一个结合。
- 单jvm的多线程竞争时,首先需要先拿到第一层的ReentrantLock的锁
- 拿到锁之后这个线程再去和其他JVM的线程竞争锁,最后拿到之后锁之后就开始处理任务。
- public class DistributedReentrantLock extends DistributedLock {
- private static final String ID_FORMAT = "Thread[{0}] Distributed[{1}]";
- private ReentrantLock reentrantLock = new ReentrantLock();
- public DistributedReentrantLock(String root) {
- super(root);
- }
- public void lock() throws InterruptedException, KeeperException {
- reentrantLock.lock();//多线程竞争时,先拿到第一层锁
- super.lock();
- }
- public boolean tryLock() throws KeeperException {
- //多线程竞争时,先拿到第一层锁
- return reentrantLock.tryLock() && super.tryLock();
- }
- public void unlock() throws KeeperException {
- super.unlock();
- reentrantLock.unlock();//多线程竞争时,释放最外层锁
- }
- @Override
- public String getId() {
- return MessageFormat.format(ID_FORMAT, Thread.currentThread().getId(), super.getId());
- }
- @Override
- public boolean isOwner() {
- return reentrantLock.isHeldByCurrentThread() && super.isOwner();
- }
- }
public class DistributedReentrantLock extends DistributedLock { private static final String ID_FORMAT = "Thread[{0}] Distributed[{1}]";
private ReentrantLock reentrantLock = new ReentrantLock(); public DistributedReentrantLock(String root) {
super(root);
} public void lock() throws InterruptedException, KeeperException {
reentrantLock.lock();//多线程竞争时,先拿到第一层锁
super.lock();
} public boolean tryLock() throws KeeperException {
//多线程竞争时,先拿到第一层锁
return reentrantLock.tryLock() && super.tryLock();
} public void unlock() throws KeeperException {
super.unlock();
reentrantLock.unlock();//多线程竞争时,释放最外层锁
} @Override
public String getId() {
return MessageFormat.format(ID_FORMAT, Thread.currentThread().getId(), super.getId());
} @Override
public boolean isOwner() {
return reentrantLock.isHeldByCurrentThread() && super.isOwner();
} }
- @Test
- public void test_lock() {
- ExecutorService exeucotr = Executors.newCachedThreadPool();
- final int count = 50;
- final CountDownLatch latch = new CountDownLatch(count);
- final DistributedReentrantLock lock = new DistributedReentrantLock(dir); //单个锁
- for (int i = 0; i < count; i++) {
- exeucotr.submit(new Runnable() {
- public void run() {
- try {
- Thread.sleep(1000);
- lock.lock();
- Thread.sleep(100 + RandomUtils.nextInt(100));
- System.out.println("id: " + lock.getId() + " is leader: " + lock.isOwner());
- } catch (InterruptedException e) {
- want.fail();
- } catch (KeeperException e) {
- want.fail();
- } finally {
- latch.countDown();
- try {
- lock.unlock();
- } catch (KeeperException e) {
- want.fail();
- }
- }
- }
- });
- }
- try {
- latch.await();
- } catch (InterruptedException e) {
- want.fail();
- }
- exeucotr.shutdown();
- }
@Test
public void test_lock() {
ExecutorService exeucotr = Executors.newCachedThreadPool();
final int count = 50;
final CountDownLatch latch = new CountDownLatch(count); final DistributedReentrantLock lock = new DistributedReentrantLock(dir); //单个锁
for (int i = 0; i < count; i++) {
exeucotr.submit(new Runnable() { public void run() {
try {
Thread.sleep(1000);
lock.lock();
Thread.sleep(100 + RandomUtils.nextInt(100)); System.out.println("id: " + lock.getId() + " is leader: " + lock.isOwner());
} catch (InterruptedException e) {
want.fail();
} catch (KeeperException e) {
want.fail();
} finally {
latch.countDown();
try {
lock.unlock();
} catch (KeeperException e) {
want.fail();
}
} }
});
} try {
latch.await();
} catch (InterruptedException e) {
want.fail();
} exeucotr.shutdown();
}
最后
其实再可以发散一下,实现一个分布式的read/write lock,也差不多就是这个理了。项目结束后,有时间可以写一下
大致思路:
- 竞争资源标示: read_自增id , write_自增id
- 首先按照自增id进行排序,如果队列的前边都是read标识,对应的所有read都获得锁。如果队列的前边是write标识,第一个write节点获取锁
- watcher监听: read监听距离自己最近的一个write节点的exist,write监听距离自己最近的一个节点(read或者write节点)
- 大小: 74.4 KB
评论
- public class LockNode implements Comparable<LockNode> {
- private final String name;
- private String prefix;
- private int sequence = -1;
- public LockNode(String name){
- Assert.notNull(name, "id cannot be null");
- this.name = name;
- this.prefix = name;
- int idx = name.lastIndexOf('-');
- if (idx >= 0) {
- this.prefix = name.substring(0, idx);
- try {
- this.sequence = Integer.parseInt(name.substring(idx + 1));
- } catch (Exception e) {
- // ignore
- }
- }
- }
- public int compareTo(LockNode that) {
- int s1 = this.sequence;
- int s2 = that.sequence;
- if (s1 == -1 && s2 == -1) {
- return this.name.compareTo(that.name);
- }
- if (s1 == -1) {
- return -1;
- } else if (s2 == -1) {
- return 1;
- } else {
- return s1 - s2;
- }
- }
- public String getName() {
- return name;
- }
- public int getSequence() {
- return sequence;
- }
- public String getPrefix() {
- return prefix;
- }
- public String toString() {
- return name.toString();
- }
- // ==================== hashcode & equals方法=======================
- @Override
- public int hashCode() {
- final int prime = 31;
- int result = 1;
- result = prime * result + ((name == null) ? 0 : name.hashCode());
- return result;
- }
- @Override
- public boolean equals(Object obj) {
- if (this == obj) {
- return true;
- }
- if (obj == null) {
- return false;
- }
- if (getClass() != obj.getClass()) {
- return false;
- }
- LockNode other = (LockNode) obj;
- if (name == null) {
- if (other.name != null) {
- return false;
- }
- } else if (!name.equals(other.name)) {
- return false;
- }
- return true;
- }
- }
public class LockNode implements Comparable<LockNode> { private final String name;
private String prefix;
private int sequence = -1; public LockNode(String name){
Assert.notNull(name, "id cannot be null");
this.name = name;
this.prefix = name;
int idx = name.lastIndexOf('-');
if (idx >= 0) {
this.prefix = name.substring(0, idx);
try {
this.sequence = Integer.parseInt(name.substring(idx + 1));
} catch (Exception e) {
// ignore
}
}
} public int compareTo(LockNode that) {
int s1 = this.sequence;
int s2 = that.sequence;
if (s1 == -1 && s2 == -1) {
return this.name.compareTo(that.name);
} if (s1 == -1) {
return -1;
} else if (s2 == -1) {
return 1;
} else {
return s1 - s2;
}
} public String getName() {
return name;
} public int getSequence() {
return sequence;
} public String getPrefix() {
return prefix;
} public String toString() {
return name.toString();
} // ==================== hashcode & equals方法======================= @Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((name == null) ? 0 : name.hashCode());
return result;
} @Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
LockNode other = (LockNode) obj;
if (name == null) {
if (other.name != null) {
return false;
}
} else if (!name.equals(other.name)) {
return false;
}
return true;
} }
【转载】zookeeper 分布式锁 实现的更多相关文章
- [转载] zookeeper 分布式锁服务
转载自http://www.cnblogs.com/shanyou/archive/2012/09/22/2697818.html 分布式锁服务在大家的项目中或许用的不多,因为大家都把排他放在数据库那 ...
- 跟着大神学zookeeper分布式锁实现-----来自Ruthless
前几天分享了@Ruthless大神的Redis锁,发现和大家都学习了很多东西.因为分布式锁里面,最好的实现是zookeeper的分布式锁.所以在这里把实现方式和大家分享一下. zookeeper分布式 ...
- zookeeper分布式锁
摘要:分享牛原创,zookeeper使用,zookeeper锁在实际项目开发中还是很常用的,在这里我们介绍一下zookeeper分布式锁的使用,以及我们如何zookeeper分布式锁的原理.zooke ...
- 分布式锁(一) Zookeeper分布式锁
什么是Zookeeper? Zookeeper(业界简称zk)是一种提供配置管理.分布式协同以及命名的中心化服务,这些提供的功能都是分布式系统中非常底层且必不可少的基本功能,但是如果自己实现这些功能而 ...
- ZooKeeper分布式锁的实现原理
七张图彻底讲清楚ZooKeeper分布式锁的实现原理[石杉的架构笔记] 文章转载自:https://juejin.im/post/5c01532ef265da61362232ed#comment(写的 ...
- ZooKeeper分布式锁的实现
ZooKeeper分布式锁的实现. 在分布式的情况下,sychornized 和 Lock 已经不能满足我们的要求了,那么就需要使用第三方的锁了,这里我们就使用 ZooKeeper 来实现一个分布式锁 ...
- Curator Zookeeper分布式锁
Curator Zookeeper分布式锁 pom.xml中添加如下配置 <!-- https://mvnrepository.com/artifact/org.apache.curator/c ...
- ZooKeeper 分布式锁实现
1 场景描述 在分布式应用, 往往存在多个进程提供同一服务. 这些进程有可能在相同的机器上, 也有可能分布在不同的机器上. 如果这些进程共享了一些资源, 可能就需要分布式锁来锁定对这些资源的访问. 2 ...
- ZooKeeper分布式锁浅谈(一)
一.概述 清明节的时候写了一篇分布式锁概述,里面介绍了分布式锁实现的几种方式,其实那时候我一直沉迷于使用redis的悲观锁和乐观锁来实现分布式锁,直到一个血案的引发才让我重新认识了redis分布式锁的 ...
- 关于分布式锁原理的一些学习与思考-redis分布式锁,zookeeper分布式锁
首先分布式锁和我们平常讲到的锁原理基本一样,目的就是确保,在多个线程并发时,只有一个线程在同一刻操作这个业务或者说方法.变量. 在一个进程中,也就是一个jvm 或者说应用中,我们很容易去处理控制,在j ...
随机推荐
- itoa : Convert integer to string
Quote from: http://www.cplusplus.com/reference/cstdlib/itoa/ function Required header : <s ...
- Jquery中去除左右空格
$.trim(" abc "); jQuery.trim(" abc ");
- echo和print语句
在php中,有两种基本的输出方法:echo 和 print echo 和 print 之间的差异: echo——能够输出一个以上的字符串,无返回值 print——只能输出一个字符串,并始终返回值为 ...
- 定时生成bat命令
windows下,定时生成bat的名. at 14:54 cmd /c "echo net share D=d:\ > d:d.bat" ^对>转义.
- odoo 清除所有运行数据
测试odoo,如果需要一个干净的db.经常需要清除掉所有业务数据.做如下操作,较为方便 1:建立一个服务器动作,动作的python代码入下. 然后新建一个菜单,菜单动作关联到 这个动作.需要清空db, ...
- VMware网络选项分析
摘自资料:VMware网卡选项分析.zip 很多朋友都曾问到关于Guest和Host互联,其实这并不是一件困难的事情,只要能够理解VMware的网络模型即可,今天结合着我的虚拟机,来详细介绍一下VMw ...
- HDU 1532 Drainage Ditches 最大流 (Edmonds_Karp)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1532 感觉题意不清楚,不知道是不是个人英语水平问题.本来还以为需要维护入度和出度来找源点和汇点呢,看 ...
- .net 反射访问私有变量和私有方法
以下为本次实践代码: using System; using System.Collections.Generic; using System.ComponentModel; using System ...
- Servlet的一些API使用介绍
final String rootPath = getServletConfig().getServletContext().getRealPath("/"); 获取项目运行的根 ...
- C# RichTextBox 获取当前显示部分的文字
int start = richTextBox1.GetCharIndexFromPosition(new Point(0, 0)); int end = richTextBox1.GetCharIn ...