取数游戏(TPM)
难度级别:D; 运行时间限制:1000ms; 运行空间限制:51200KB; 代码长度限制:2000000B
试题描述

给你一个n*n的格子的棋盘,每个格子里面有一个非负数。从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能有公共边,并且取出的数的和最大。(二分图匹配练习)

输入
第一行是一个正整数n (n<20)。
接下来是 n*n 个非负数。
输出
输出可能取得的最大的和。
输入示例
3
5 9 4
8 3 6
2 7 1
输出示例
30
其他说明
n<20

题解:“没有公共边”这是赤裸裸的二分图呀!随便按(i+j)&1造个二分图跑了就行。。。

而且,这是我第一个接触的构造题吧= = 还是非常有纪念意义的= =我记得当年还是小健建给我亲自敲了一遍DInic然后敲了一遍这道题。。。回忆满满呢~

现在老练的ISAP+缩行:

 //这两道题有什么区别。。。= =
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
const int maxn=+,maxm=+,inf=-1u>>;
struct ISAP{
struct tedge{int x,y,w,next;}adj[maxm];int ms,fch[maxn];
int d[maxn],s[maxn],cur[maxn],gap[maxn],n,top;
void init(int n){
this->n=n;ms=;top=;
memset(d,-,sizeof(d));
memset(fch,-,sizeof(fch));
return;
}
void addedge(int u,int v,int w){
adj[ms]=(tedge){u,v,w,fch[u]};fch[u]=ms++;
adj[ms]=(tedge){v,u,,fch[v]};fch[v]=ms++;
return;
}
void bfs(){
queue<int>Q;Q.push(n);d[n]=;
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int i=fch[u];i!=-;i=adj[i].next){
int v=adj[i].y;
if(d[v]==-) d[v]=d[u]+,Q.push(v);
}
} return;
}
int maxflow(int S,int T){
n=T;bfs();int k=S,i,flow=;
for(i=;i<=n;i++) cur[i]=fch[i],gap[d[i]]++;
while(d[S]<n){
if(k==n){
int mi=inf,pos;
for(i=;i<top;i++) if(adj[s[i]].w<mi) mi=adj[s[i]].w,pos=i;
for(i=;i<top;i++) adj[s[i]].w-=mi,adj[s[i]^].w+=mi;
flow+=mi;top=pos;k=adj[s[top]].x;
}
for(i=cur[k];i!=-;i=adj[i].next){
int v=adj[i].y;
if(adj[i].w&&d[k]==d[v]+){cur[k]=i;k=v;s[top++]=i;break;}
}
if(i==-){
int lim=n;
for(i=fch[k];i!=-;i=adj[i].next){
int v=adj[i].y;
if(adj[i].w&&d[v]<lim) lim=d[v],cur[k]=i;
} if(--gap[d[k]]==) break;
d[k]=lim+;gap[d[k]]++;
if(k!=S) k=adj[s[--top]].x;
}
} return flow;
}
}sol;
inline int read(){
int x=,sig=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') sig=-;ch=getchar();}
while(isdigit(ch)) x=*x+ch-'',ch=getchar();
return x*=sig;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<) putchar('-'),x=-x;
int len=,buf[];while(x) buf[len++]=x%,x/=;
for(int i=len-;i>=;i--) putchar(buf[i]+'');return;
}
int A[][],mx[]={,-,,},my[]={,,-,};
void init(){
int n=read();long long ans=;
sol.init(n*n+);int S=n*n+,T=n*n+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
A[i][j]=read();
if((i+j)&){
sol.addedge(S,i*n+j-n,A[i][j]);
for(int d=;d<;d++){
int nx=i+mx[d],ny=j+my[d];
if(nx>=&&nx<=n&&ny>=&&ny<=n) sol.addedge(i*n+j-n,nx*n+ny-n,inf);
}
}
else sol.addedge(i*n+j-n,T,A[i][j]);
ans+=A[i][j];
}
write(ans-sol.maxflow(S,T));
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){
init();work();print();return ;
}

当时最稚嫩的代码。。。真的有种说不出的感动:

 #include <iostream>
#include <queue>
using namespace std; const int maxn = + ;
const int maxm = + ; struct Edge
{
int from, to, cap, flow;
}; struct Dinic
{
int n, m, s, t;
int first[maxn], next[maxm]; Edge edges[maxm]; void init(int n)
{
this -> n = n;
m = ; memset(first, -, sizeof(first)); return ;
} void AddEdge(int from, int to, int cap)
{
edges[m] = (Edge){from, to, cap, };
next[m] = first[from];
first[from] = m++; edges[m] = (Edge){to, from, , };
next[m] = first[to];
first[to] = m++; return ;
} int d[maxn], cur[maxn];
bool vis[maxn]; int BFS()
{
memset(vis, , sizeof(vis));
queue<int> Q; Q.push(s);
vis[s] = true;
d[s] = ; while(!Q.empty())
{
int x = Q.front(); Q.pop(); for(int i = first[x]; i != -; i = next[i])
{
Edge& e = edges[i];
if(!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = true;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
} return vis[t];
}
int DFS(int x, int a)
{
if(x == t || !a) return a; int f, flow = ; for(int& i = cur[x]; i != -; i = next[i])
{
Edge& e = edges[i];
if(d[e.to] == d[x] + && (f = DFS(e.to, min(a, e.cap - e.flow))) > )
{
flow += f;
a -= f;
e.flow += f;
edges[i ^ ].flow -= f;
if(!a) break;
}
}
return flow;
} int MaxFlow(int s, int t)
{
this -> s = s;
this -> t = t; int flow = ; while(BFS())
{
for(int i = ; i < n; i++) cur[i] = first[i];
flow += DFS(s, );
}
return flow; //你大爷!!!!!!!!!!!!!!!!
}
}sol; int a[][];
int nx[] = {, , -, };
int ny[] = {-, , , }; int main()
{
int n, m;
scanf("%d", &n); m = n; sol.init(n * m + ); long long double tot = ; int s = n * m;
int t = n * m + ; for(int i = ; i < n; i++)
for(int j = ; j < m; j++)
{
scanf("%d", &a[i][j]);
tot += a[i][j];
if((i + j) & )
{
sol.AddEdge(s, i * m + j, a[i][j]); for(int d = ; d < ; d++)
{
int mx = nx[d] + i;
int my = ny[d] + j; if(mx >= && mx < n && my >= && my < m)
{
sol.AddEdge(i * m + j, mx * m + my, );
}
}
}
else sol.AddEdge(i * m + j, t, a[i][j]);
} printf("%d\n", tot - sol.MaxFlow(s, t));
//system("pause");
return ;
}

搜索

复制

COJ 0501 取数游戏(TPM)的更多相关文章

  1. NOIP2007 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  2. 1166 矩阵取数游戏[区间dp+高精度]

    1166 矩阵取数游戏 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description [ ...

  3. 矩阵取数游戏 NOIP 2007

    2016-05-31 17:26:45 题目链接: NOIP 2007 矩阵取数游戏(Codevs) 题目大意: 给定一个矩阵,每次在每一行的行首或者行尾取一个数乘上2^次数,求取完最多获得的分数 解 ...

  4. 洛谷 P1005 矩阵取数游戏

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  5. BZOJ1978: [BeiJing2010]取数游戏 game

    1978: [BeiJing2010]取数游戏 game Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 650  Solved: 400[Submit] ...

  6. codevs1166 矩阵取数游戏

    题目描述 Description [问题描述] 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m 的矩阵,矩阵中的每个元素aij均 为非负整数.游戏规则如下: 1. 每次取数时须从每行各取走一个 ...

  7. BZOJ 1978: [BeiJing2010]取数游戏 game( dp )

    dp(x)表示前x个的最大值,  Max(x)表示含有因数x的dp最大值. 然后对第x个数a[x], 分解质因数然后dp(x) = max{Max(t)} + 1, t是x的因数且t>=L -- ...

  8. 矩阵取数游戏洛谷p1005

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  9. 计蒜客 取数游戏 博弈+dp

    题目链接 取数游戏 思路:dp(x, y)表示先手在区间[x, y]能取得的最大分数.当先手取完,就轮到后手去,后手一定会选择当前能令他得到最大分数的策略,其实当先手在[x, y]区间两端取走一个数, ...

随机推荐

  1. Android中的Zip解压缩

    import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import ...

  2. 2015湖南省选集训DAY5——work(BZOJ4177)

    Description Mike有一个农场,这个农场n个牲畜围栏,如今他想在每一个牲畜围栏中养一仅仅动物,每仅仅动物能够是牛或羊,并且每一个牲畜围栏中的饲养条件都不同,当中第i个牲畜围栏中的动物长大后 ...

  3. java——递归调用

    递归函数调用调用本身,并通过自己的相应参数,这个计算过程中进行层,直到满足某些条件,只要停止呼叫. 递归函数的特点 1.函数要直接或间接调用自身. 2.要有递归终止条件检查.即递归终止的条件被满足后. ...

  4. Git 版本控制工具使用介绍------Windows系统下使用

    Git 是用于 Linux内核开发的版本控制工具.与常用的版本控制工具 CVS, Subversion 等不同,它采用了分布式版本库的方式,不必服务器端软件支持(wingeddevil注:这得分是用什 ...

  5. Linux shell入门基础(六)

    六.Shell脚本编程详解 将上述五部分的内容,串联起来,增加对Shell的了解 01.shell脚本 shell: # #perl #python #php #jsp 不同的脚本执行不同的文本,执行 ...

  6. ASP.NET面试

    1.net中读写数据库需要用到那些类?他们的作用都是什么?答:DataSet:数据存储器.DataCommand:执行语句命令.DataAdapter:数据的集合,用语填充.2.介绍一下什么是Code ...

  7. 【开源java游戏框架libgdx专题】-09-动画的使用

    1.Animation类介绍   Api定义:动画是由多个帧,在设定的时间间隔序列显示.比如,一个跑步的人一个动画可以通过运行时播放这些图像无限拍照他了. 功能用法:管理动画,设置随即播放模式和播放顺 ...

  8. OC - 20.多图下载

    效果图 常见问题及解决方法 图片重复下载 将内存保存在内存或沙盒中. 若下载的图片量较大,则会出现UI界面不流畅的现象 在子线程中执行下载操作,然后回到主线程成中进行UI界面的刷新. 由于cell的循 ...

  9. ONVIF Event消息解析(How to work with gSoap)

    Prepare Requirements ONVIF Event gSoap reference ONVIF Specification 问题描述 Event是ONVIF核心规范中一块, 文档解释了如 ...

  10. JVM内存管理及垃圾回收

    一.JVM内存的构 Java虚拟机会将内存分为几个不同的管理区,这些区域各自有各自的用途,根据不同的特点,承担不同的任务以及在垃圾回收时运用不同的算法.总体分为下面几个部分: 程序计数器(Progra ...