Description

致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安。我们将H村抽象为一维的轮廓。如下图所示 我们可以用一条山的上方轮廓折线(x1, y1), (x2, y2), …. (xn, yn)来描述H村的形状,这里x1 < x2 < …< xn。瞭望塔可以建造在[x1, xn]间的任意位置, 但必须满足从瞭望塔的顶端可以看到H村的任意位置。可见在不同的位置建造瞭望塔,所需要建造的高度是不同的。为了节省开支,dadzhi村长希望建造的塔高度尽可能小。请你写一个程序,帮助dadzhi村长计算塔的最小高度。

Input

第一行包含一个整数n,表示轮廓折线的节点数目。接下来第一行n个整数, 为x1 ~ xn. 第三行n个整数,为y1 ~ yn。

Output

仅包含一个实数,为塔的最小高度,精确到小数点后三位。

Sample Input

【输入样例一】
6
1 2 4 5 6 7
1 2 2 4 2 1
【输入样例二】
4
10 20 49 59
0 10 10 0

Sample Output

【输出样例一】
1.000
【输出样例二】
14.500

HINT

对于100%的数据, N ≤ 300,输入坐标绝对值不超过106,注意考虑实数误差带来的问题。

Source

半平面交。对于每条线段,所能看到其整条线段的点一定的在其所延长直线的上方,因此我们可以对所以直线求一次半平面交。

然后,最优解一定在线段端点处或半平面交所得多边形的顶点处。

 #include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std; #define eps (1e-6)
#define oo ((double)(1ll<<50))
#define maxn 310
int n,m,tot,cnt;
double ans = oo;
struct NODE
{
double x,y;
friend inline NODE operator + (const NODE &p,const NODE &q) { return (NODE) {p.x+q.x,p.y+q.y}; }
friend inline NODE operator - (const NODE &p,const NODE &q) { return (NODE) {p.x-q.x,p.y-q.y}; }
friend inline NODE operator * (const NODE &p,const double &q) { return (NODE) {p.x*q,p.y*q}; }
friend inline double operator /(const NODE &p,const NODE &q) { return p.x*q.y-p.y*q.x; }
inline double alpha() { return atan2(y,x); }
}mou[maxn],pol[maxn],pp[maxn];
struct LINE
{
NODE p,v; double slop;
inline void maintain() { slop = v.alpha(); }
friend inline bool operator <(const LINE &l1,const LINE &l2) { return l1.slop < l2.slop; }
}lines[maxn],qq[maxn];
struct SCAN
{
double x,y; int id; bool sign;
friend inline bool operator <(const SCAN &a,const SCAN &b)
{
if (a.x != b.x) return a.x < b.x;
else return a.sign < b.sign;
}
}bac[maxn]; inline bool ol(const LINE &l,const NODE &p) { return l.v/(p-l.p) > ; } inline NODE cp(const LINE &a,const LINE &b)
{
NODE u = a.p - b.p;
double t = (b.v/u)/(a.v/b.v);
return a.p+a.v*t;
} inline bool para(const LINE &a,const LINE &b)
{
return fabs(a.v/b.v) < eps;
} inline void ready()
{
for (int i = ;i < n;++i)
{
lines[++tot] = (LINE) {mou[i],(mou[i+]-mou[i])*1e-};
lines[tot].maintain();
}
lines[++tot] = (LINE) {(NODE) {-oo,},(NODE){,-0.001}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {,oo},(NODE){-0.001,}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {oo,},(NODE){,0.001}};
lines[tot].maintain(); lines[++tot] = (LINE) {(NODE) {,-oo},(NODE){0.001,}};
lines[tot].maintain();
} inline int half_plane_intersection()
{
sort(lines+,lines+tot+);
int head,tail;
qq[head = tail = ] = lines[];
for (int i = ;i <= tot;++i)
{
while (head < tail&&!ol(lines[i],pp[tail-])) --tail;
while (head < tail&&!ol(lines[i],pp[head])) ++head;
qq[++tail] = lines[i];
if (para(qq[tail],qq[tail-]))
{
tail--;
if (ol(qq[tail],lines[i].p)) qq[tail] = lines[i];
}
if (head < tail) pp[tail-] = cp(qq[tail],qq[tail-]);
}
while (head < tail && !ol(qq[head],pp[tail-])) --tail;
if (tail-head <= ) return ;
pp[tail] = cp(qq[tail],qq[head]);
for (int i = head;i <= tail;++i) pol[++m] = pp[i];
pol[] = pol[m];
return m;
} inline void work()
{
int all = ;
for (int i = ;i <= n;++i)
bac[++all] = (SCAN) { mou[i].x,mou[i].y,i,false };
for (int i = ;i <= m;++i)
if (pol[i].x >= mou[].x&&pol[i].x <= mou[n].x)
bac[++all] = (SCAN) { pol[i].x,pol[i].y,i,true };
sort(bac+,bac+all+);
int s1,s2;
for (int i = ;i <= all;++i) if (bac[i].sign) { s1 = bac[i].id-; break; }
for (int i = ;i <= all;++i)
{
LINE l = (LINE) {(NODE) {bac[i].x,},(NODE) {,}},l1; NODE p;
if (!bac[i].sign)
{
l1= (LINE) {pol[s1],pol[s1+]-pol[s1]};
s2 = bac[i].id;
}
else
{
l1= (LINE) {mou[s2],mou[s2+]-mou[s2]};
s1 = bac[i].id;
}
p = cp(l,l1);
ans = min(ans,fabs(p.y-bac[i].y));
}
} int main()
{
freopen("1038.in","r",stdin);
freopen("1038.out","w",stdout);
scanf("%d ",&n);
for (int i = ;i <= n;++i) scanf("%lf",&mou[i].x);
for (int i = ;i <= n;++i) scanf("%lf",&mou[i].y);
ready();
half_plane_intersection();
work();
printf("%.3lf",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1038 瞭望塔的更多相关文章

  1. bzoj 1038 瞭望塔 半平面交+分段函数

    题目大意 给你一座山,山的形状在二维平面上为折线 给出\((x_1,y_1),(x_2,y_2)...(x_n,y_n)\)表示山的边界点或转折点 现在要在\([x_1,x_n]\)(闭区间)中选择一 ...

  2. 【BZOJ】【1038】【ZJOI2008】瞭望塔

    计算几何/半平面交 说是半平面交,实际上只是维护了个下凸壳而已……同1007水平可见直线 对于每条线段,能看到这条线段的点都在这条线段的“上方”,那么对所有n-1条线段求一个可视区域的交,就是求一个半 ...

  3. 【BZOJ 1038】 1038: [ZJOI2008]瞭望塔

    1038: [ZJOI2008]瞭望塔 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 ...

  4. 【BZOJ 1038】[ZJOI2008]瞭望塔

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1038 [题意] [题解] 可以看到所有村子的瞭望塔所在的位置只会是在相邻两个村子所代表 ...

  5. 1038: [ZJOI2008]瞭望塔 - BZOJ

    Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线(x1, ...

  6. bzoj千题计划126:bzoj1038: [ZJOI2008]瞭望塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1038 本题可以使用三分法 将点按横坐标排好序后 对于任意相邻两个点连成的线段,瞭望塔的高度 是单峰函 ...

  7. 1038: [ZJOI2008]瞭望塔

    半平面交. 半平面指的就是一条直线的左面(也不知道对不对) 半平面交就是指很多半平面的公共部分. 这道题的解一定在各条直线的半平面交中. 而且瞭望塔只可能在各个点或者半平面交折线的拐点处. 求出半平面 ...

  8. 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心

    题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...

  9. [BZOJ1038][ZJOI2008]瞭望塔(半平面交)

    1038: [ZJOI2008]瞭望塔 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2999  Solved: 1227[Submit][Statu ...

随机推荐

  1. ICSharpCode.SharpZipLib压缩解压

    一.使用ICSharpCode.SharpZipLib.dll: 下载地址 http://www.icsharpcode.net/OpenSource/SharpZipLib/Download.asp ...

  2. iOS开发中关于UIImage的知识点总结

    UIImage是iOS中层级比较高的一个用来加载和绘制图像的一个类,更底层的类还有 CGImage,以及iOS5.0以后新增加的CIImage.今天我们主要聊一聊UIImage的三个属性: image ...

  3. Instruction (hdu 5083)

    Instruction Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. 两层Fragment嵌套,外层Fragment切换时内层Fragment不显示内容

    尊重他人劳动成果,转载请说明出处:http://blog.csdn.net/bingospunky/article/details/46847269 需求 在搭界面有这么样一个需求:须要两层的Frag ...

  5. cocos2dx实现android的对讯飞语音的合成(语言朗读的实现)

    事实上非常easy,只是有些细节须要注意. 关于讯飞语音在android上的应用,大家须要自己去下载SDK,然后依照讯飞语音提供的api在自己的android的Demo上执行成功,那东西也相当的简单. ...

  6. TCP洪水攻击(SYN Flood)的诊断和处理

    TCP洪水攻击(SYN Flood)的诊断和处理   SYN Flood介绍 前段时间网站被攻击多次,其中最猛烈的就是TCP洪水攻击,即SYN Flood. SYN Flood是当前最流行的DoS(拒 ...

  7. iOS NavigaitonController详解(code版)

    参考文章:http://blog.csdn.net/totogo2010/article/details/7681879,参考了这篇文章,写的超级好,自己他的基础上加上了自己的理解. 下面的图显示了导 ...

  8. Elasticsearch .Net Client NEST 索引DataSet数据

    NEST 索引DataSet数据,先序列化然后转成dynamic 类型进行索引: /// <summary> /// 索引dataset /// </summary> /// ...

  9. 单例模式,多种实现方式JAVA

    转载请注明出处:http://cantellow.iteye.com/blog/838473 第一种(懒汉,线程不安全): public class Singleton { private stati ...

  10. (转)PHP下编码转换函数mb_convert_encoding与iconv的使用说明

    之--http://www.jb51.net/article/21451.htm mb_convert_encoding这个函数是用来转换编码的.原来一直对程序编码这一概念不理解,不过现在好像有点开窍 ...