机器学习02-(损失函数loss、梯度下降、线性回归、评估训练、模型加载、岭回归、多项式回归)
机器学习-02
回归模型
线性回归
输入 输出
0.5 5.0
0.6 5.5
0.8 6.0
1.1 6.8
1.4 7.0
...
y = f(x)
预测函数:y = w0+w1x
x: 输入
y: 输出
w0和w1: 模型参数
所谓模型训练,就是根据已知的x和y,找到最佳的模型参数w0 和 w1,尽可能精确地描述出输入和输出的关系。
5.0 = w0 + w1 × 0.5
5.5 = w0 + w1 × 0.6
单样本误差:
根据预测函数求出输入为x时的预测值:y’ = w0 + w1x,单样本误差为1/2(y’ - y)2。
总样本误差:
把所有单样本误差相加即是总样本误差:1/2 Σ(y’ - y)2
损失函数:
loss = 1/2 Σ(w0 + w1x - y)2
所以损失函数就是总样本误差关于模型参数的函数,该函数属于三维数学模型,即需要找到一组w0 w1使得loss取极小值。
案例:画图模拟梯度下降的过程
- 整理训练集数据,自定义梯度下降算法规则,求出w0 , w1 ,绘制回归线。
import numpy as np
import matplotlib.pyplot as mp
train_x = np.array([0.5, 0.6, 0.8, 1.1, 1.4])
train_y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])
test_x = np.array([0.45, 0.55, 1.0, 1.3, 1.5])
test_y = np.array([4.8, 5.3, 6.4, 6.9, 7.3])
times = 1000 # 定义梯度下降次数
lrate = 0.01 # 记录每次梯度下降参数变化率
epoches = [] # 记录每次梯度下降的索引
w0, w1, losses = [1], [1], []
for i in range(1, times + 1):
epoches.append(i)
loss = (((w0[-1] + w1[-1] * train_x) - train_y) ** 2).sum() / 2
losses.append(loss)
d0 = ((w0[-1] + w1[-1] * train_x) - train_y).sum()
d1 = (((w0[-1] + w1[-1] * train_x) - train_y) * train_x).sum()
print('{:4}> w0={:.8f}, w1={:.8f}, loss={:.8f}'.format(epoches[-1], w0[-1], w1[-1], losses[-1]))
w0.append(w0[-1] - lrate * d0)
w1.append(w1[-1] - lrate * d1)
pred_test_y = w0[-1] + w1[-1] * test_x
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(train_x, train_y, marker='s', c='dodgerblue', alpha=0.5, s=80, label='Training')
mp.scatter(test_x, test_y, marker='D', c='orangered', alpha=0.5, s=60, label='Testing')
mp.scatter(test_x, pred_test_y, c='orangered', alpha=0.5, s=80, label='Predicted')
mp.plot(test_x, pred_test_y, '--', c='limegreen', label='Regression', linewidth=1)
mp.legend()
mp.show()
- 绘制随着每次梯度下降,w0,w1,loss的变化曲线。
w0 = w0[:-1]
w1 = w1[:-1]
mp.figure('Training Progress', facecolor='lightgray')
mp.subplot(311)
mp.title('Training Progress', fontsize=20)
mp.ylabel('w0', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w0, c='dodgerblue', label='w0')
mp.legend()
mp.subplot(312)
mp.ylabel('w1', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w1, c='limegreen', label='w1')
mp.legend()
mp.subplot(313)
mp.xlabel('epoch', fontsize=14)
mp.ylabel('loss', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, losses, c='orangered', label='loss')
mp.legend()
- 基于三维曲面绘制梯度下降过程中的每一个点。
import mpl_toolkits.mplot3d as axes3d
grid_w0, grid_w1 = np.meshgrid(
np.linspace(0, 9, 500),
np.linspace(0, 3.5, 500))
grid_loss = np.zeros_like(grid_w0)
for x, y in zip(train_x, train_y):
grid_loss += ((grid_w0 + x*grid_w1 - y) ** 2) / 2
mp.figure('Loss Function')
ax = mp.gca(projection='3d')
mp.title('Loss Function', fontsize=20)
ax.set_xlabel('w0', fontsize=14)
ax.set_ylabel('w1', fontsize=14)
ax.set_zlabel('loss', fontsize=14)
ax.plot_surface(grid_w0, grid_w1, grid_loss, rstride=10, cstride=10, cmap='jet')
ax.plot(w0, w1, losses, 'o-', c='orangered', label='BGD')
mp.legend()
- 以等高线的方式绘制梯度下降的过程。
mp.figure('Batch Gradient Descent', facecolor='lightgray')
mp.title('Batch Gradient Descent', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.contourf(grid_w0, grid_w1, grid_loss, 10, cmap='jet')
cntr = mp.contour(grid_w0, grid_w1, grid_loss, 10,
colors='black', linewidths=0.5)
mp.clabel(cntr, inline_spacing=0.1, fmt='%.2f',
fontsize=8)
mp.plot(w0, w1, 'o-', c='orangered', label='BGD')
mp.legend()
mp.show()
线性回归相关API:
import sklearn.linear_model as lm
# 创建模型
model = lm.LinearRegression()
# 训练模型
# 输入为一个二维数组表示的样本矩阵
# 输出为每个样本最终的结果
model.fit(输入, 输出) # 通过梯度下降法计算模型参数
# 预测输出
# 输入array是一个二维数组,每一行是一个样本,每一列是一个特征。
result = model.predict(array)
浓度 深度 温度 腐蚀速率
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.002 200 -2 ?
0.003 300 -4 ?
案例:基于线性回归训练single.txt中的训练样本,使用模型预测测试样本。
import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建模型
model = lm.LinearRegression() # 线性回归
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y = model.predict(x)
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75, s=60, label='Sample')
mp.plot(x, pred_y, c='orangered', label='Regression')
mp.legend()
mp.show()
评估训练结果误差(metrics)
线性回归模型训练完毕后,可以利用测试集评估训练结果误差。sklearn.metrics提供了计算模型误差的几个常用算法:
import sklearn.metrics as sm
# 平均绝对值误差:1/m∑|实际输出-预测输出|
sm.mean_absolute_error(y, pred_y)
# 平均平方误差:SQRT(1/mΣ(实际输出-预测输出)^2)
sm.mean_squared_error(y, pred_y)
# 中位绝对值误差:MEDIAN(|实际输出-预测输出|)
sm.median_absolute_error(y, pred_y)
# R2得分,(0,1]区间的分值。分数越高,误差越小。
sm.r2_score(y, pred_y)
案例:在上一个案例中使用sm评估模型误差。
# 平均绝对值误差:1/m∑|实际输出-预测输出|
print(sm.mean_absolute_error(y, pred_y))
# 平均平方误差:SQRT(1/mΣ(实际输出-预测输 出)^2)
print(sm.mean_squared_error(y, pred_y))
# 中位绝对值误差:MEDIAN(|实际输出-预测输出|)
print(sm.median_absolute_error(y, pred_y))
# R2得分,(0,1]区间的分值。分数越高,误差越小。
print(sm.r2_score(y, pred_y))
模型的保存和加载
模型训练是一个耗时的过程,一个优秀的机器学习是非常宝贵的。可以模型保存到磁盘中,也可以在需要使用的时候从磁盘中重新加载模型即可。不需要重新训练。
模型保存和加载相关API:
import pickle
pickle.dump(内存对象, 磁盘文件) # 保存模型
model = pickle.load(磁盘文件) # 加载模型
案例:把训练好的模型保存到磁盘中。
# 将训练好的模型对象保存到磁盘文件中
with open('../../data/linear.pkl', 'wb') as f:
pickle.dump(model, f)
# 从磁盘文件中加载模型对象
with open('../../data/linear.pkl', 'rb') as f:
model = pickle.load(f)
# 根据输入预测输出
pred_y = model.predict(x)
岭回归
普通线性回归模型使用基于梯度下降的最小二乘法,在最小化损失函数的前提下,寻找最优模型参数,于此过程中,包括少数异常样本在内的全部训练数据都会对最终模型参数造成程度相等的影响,异常值对模型所带来影响无法在训练过程中被识别出来。为此,岭回归在模型迭代过程所依据的损失函数中增加了正则项,以限制模型参数对异常样本的匹配程度,进而提高模型面对多数正常样本的拟合精度。
import sklearn.linear_model as lm
# 创建模型
model = lm.Ridge(正则强度,fit_intercept=是否训练截距, max_iter=最大迭代次数)
# 训练模型
# 输入为一个二维数组表示的样本矩阵
# 输出为每个样本最终的结果
model.fit(输入, 输出)
# 预测输出
# 输入array是一个二维数组,每一行是一个样本,每一列是一个特征。
result = model.predict(array)
案例:加载abnormal.txt文件中的数据,基于岭回归算法训练回归模型。
import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建线性回归模型
model = lm.LinearRegression()
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y1 = model.predict(x)
# 创建岭回归模型
model = lm.Ridge(150, fit_intercept=True, max_iter=10000)
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y2 = model.predict(x)
mp.figure('Linear & Ridge', facecolor='lightgray')
mp.title('Linear & Ridge', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75,
s=60, label='Sample')
sorted_indices = x.T[0].argsort()
mp.plot(x[sorted_indices], pred_y1[sorted_indices],
c='orangered', label='Linear')
mp.plot(x[sorted_indices], pred_y2[sorted_indices],
c='limegreen', label='Ridge')
mp.legend()
mp.show()
多项式回归
浓度 深度 温度 腐蚀速率
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.001 100 -1 0.0002
0.002 200 -2 ?
0.003 300 -4 ?
若希望回归模型更好的拟合训练样本数据,可以使用多项式回归器。
一元多项式回归
y=w0 + w1 x + w2 x2 + w3 x3 + … + wd xd
将高次项看做对一次项特征的扩展得到:
y=w0 + w1 x1 + w2 x2 + w3 x3 + … + wd xd
那么一元多项式回归即可以看做为多元线性回归,可以使用LinearRegression模型对样本数据进行模型训练。
所以一元多项式回归的实现需要两个步骤:
- 将一元多项式回归问题转换为多元线性回归问题(只需给出多项式最高次数即可)。
- 将1步骤得到多项式的结果中 w1 w2 … 当做样本特征,交给线性回归器训练多元线性模型。
使用sklearn提供的数据管线实现两个步骤的顺序执行:
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm
model = pl.make_pipeline(
sp.PolynomialFeatures(10), # 多项式特征扩展器
lm.LinearRegression()) # 线性回归器
案例:
import numpy as np
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm
import sklearn.metrics as sm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建模型(管线)
model = pl.make_pipeline(
sp.PolynomialFeatures(10), # 多项式特征扩展器
lm.LinearRegression()) # 线性回归器
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y = model.predict(x)
test_x = np.linspace(x.min(), x.max(), 1000).reshape(-1, 1)
pred_test_y = model.predict(test_x)
mp.figure('Polynomial Regression', facecolor='lightgray')
mp.title('Polynomial Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75, s=60, label='Sample')
mp.plot(test_x, pred_test_y, c='orangered', label='Regression')
mp.legend()
mp.show()
过于简单的模型,无论对于训练数据还是测试数据都无法给出足够高的预测精度,这种现象叫做欠拟合。
过于复杂的模型,对于训练数据可以得到较高的预测精度,但对于测试数据通常精度较低,这种现象叫做过拟合。
一个性能可以接受的学习模型应该对训练数据和测试数据都有接近的预测精度,而且精度不能太低。
训练集R2 测试集R2
0.3 0.4 欠拟合:过于简单,无法反映数据的规则
0.9 0.2 过拟合:过于复杂,太特殊,缺乏一般性
0.7 0.6 可接受:复杂度适中,既反映数据的规则,同时又不失一般性
案例:预测波士顿地区房屋价格。
- 读取数据,打断原始数据集。 划分训练集和测试集。
import sklearn.datasets as sd
import sklearn.utils as su
# 加载波士顿地区房价数据集
boston = sd.load_boston()
print(boston.feature_names)
# |CRIM|ZN|INDUS|CHAS|NOX|RM|AGE|DIS|RAD|TAX|PTRATIO|B|LSTAT|
# 犯罪率|住宅用地比例|商业用地比例|是否靠河|空气质量|房间数|年限|距中心区距离|路网密度|房产税|师生比|黑人比例|低地位人口比例|
# 打乱原始数据集的输入和输出
x, y = su.shuffle(boston.data, boston.target, random_state=7)
# 划分训练集和测试集
train_size = int(len(x) * 0.8)
train_x, test_x, train_y, test_y = \
x[:train_size], x[train_size:], \
y[:train_size], y[train_size:]
- 基于岭回归与多项式回归训练模型并测试模型性能。
代码查看代码总结中的波士顿房屋价格数据分析与房价预测案例
代码总结
线性回归
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
x = np.array([0.5, 0.6, 0.8, 1.1, 1.4])
y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])
data = pd.DataFrame({'x':x, 'y':y})
data.plot.scatter(x='x', y='y', s=80)
<matplotlib.axes._subplots.AxesSubplot at 0x172b9e28cf8>
# 基于线性回归,梯度下降理论找到最优秀的直线拟合当前这组样本数据
w0, w1 = 1, 1 # 模型参数
lrate = 0.01 # 学习率
times = 1000 # 迭代次数
# 整理一些数组,用于后期画图
epoches, w0s, w1s, losses= [], [], [], []
for i in range(times):
# 计算当前w0与w1的状态下的loss函数值
loss = ((w0 + w1*x - y)**2).sum()/2
epoches.append(i+1)
w0s.append(w0)
w1s.append(w1)
losses.append(loss)
# 输出模型参数的变化过程
print('{:4}, w0:{:.8f}, w1:{:.8f}, loss:{:.8f}'.format(i+1, w0, w1, loss))
# 更新w0与w1 (需要求出w0与w1方向上的偏导数,带入更新公式)
d0 = (w0 + w1*x - y).sum()
d1 = (x*(w0 + w1*x - y)).sum()
w0 = w0 - lrate * d0
w1 = w1 - lrate * d1
1, w0:1.00000000, w1:1.00000000, loss:44.17500000
2, w0:1.20900000, w1:1.19060000, loss:36.53882794
3, w0:1.39916360, w1:1.36357948, loss:30.23168666
4, w0:1.57220792, w1:1.52054607, loss:25.02222743
5, w0:1.72969350, w1:1.66296078, loss:20.71937337
6, w0:1.87303855, w1:1.79215140, loss:17.16530917
7, w0:2.00353196, w1:1.90932461, loss:14.22969110
8, w0:2.12234508, w1:2.01557706, loss:11.80486494
9, w0:2.23054244, w1:2.11190537, loss:9.80191627
10, w0:2.32909148, w1:2.19921529, loss:8.14740839
11, w0:2.41887143, w1:2.27832995, loss:6.78068803
12, w0:2.50068134, w1:2.34999742, loss:5.65166010
13, w0:2.57524739, w1:2.41489755, loss:4.71894976
14, w0:2.64322953, w1:2.47364820, loss:3.94838447
15, w0:2.70522753, w1:2.52681085, loss:3.31174023
16, w0:2.76178648, w1:2.57489580, loss:2.78570611
17, w0:2.81340174, w1:2.61836680, loss:2.35102901
18, w0:2.86052351, w1:2.65764531, loss:1.99180729
19, w0:2.90356094, w1:2.69311435, loss:1.69490738
20, w0:2.94288586, w1:2.72512202, loss:1.44948190
21, w0:2.97883620, w1:2.75398465, loss:1.24657173
22, w0:3.01171907, w1:2.77998973, loss:1.07877728
23, w0:3.04181357, w1:2.80339855, loss:0.93998705
24, w0:3.06937335, w1:2.82444853, loss:0.82515337
25, w0:3.09462895, w1:2.84335548, loss:0.73010724
26, w0:3.11778986, w1:2.86031549, loss:0.65140537
27, w0:3.13904648, w1:2.87550680, loss:0.58620385
28, w0:3.15857186, w1:2.88909135, loss:0.53215381
29, w0:3.17652325, w1:2.90121635, loss:0.48731526
30, w0:3.19304357, w1:2.91201557, loss:0.45008589
31, w0:3.20826270, w1:2.92161056, loss:0.41914232
32, w0:3.22229870, w1:2.93011181, loss:0.39339153
33, w0:3.23525885, w1:2.93761973, loss:0.37193074
34, w0:3.24724064, w1:2.94422555, loss:0.35401433
35, w0:3.25833268, w1:2.95001219, loss:0.33902647
36, w0:3.26861551, w1:2.95505501, loss:0.32645850
37, w0:3.27816232, w1:2.95942250, loss:0.31589033
38, w0:3.28703961, w1:2.96317688, loss:0.30697497
39, w0:3.29530785, w1:2.96637472, loss:0.29942583
40, w0:3.30302197, w1:2.96906741, loss:0.29300619
41, w0:3.31023190, w1:2.97130167, loss:0.28752056
42, w0:3.31698303, w1:2.97311993, loss:0.28280743
43, w0:3.32331660, w1:2.97456078, loss:0.27873344
44, w0:3.32927010, w1:2.97565926, loss:0.27518842
45, w0:3.33487759, w1:2.97644724, loss:0.27208136
46, w0:3.34017003, w1:2.97695365, loss:0.26933710
47, w0:3.34517557, w1:2.97720482, loss:0.26689356
48, w0:3.34991978, w1:2.97722464, loss:0.26469945
49, w0:3.35442590, w1:2.97703484, loss:0.26271241
50, w0:3.35871508, w1:2.97665516, loss:0.26089744
51, w0:3.36280649, w1:2.97610354, loss:0.25922564
52, w0:3.36671761, w1:2.97539628, loss:0.25767311
53, w0:3.37046430, w1:2.97454819, loss:0.25622012
54, w0:3.37406096, w1:2.97357273, loss:0.25485037
55, w0:3.37752071, w1:2.97248213, loss:0.25355040
56, w0:3.38085546, w1:2.97128751, loss:0.25230905
57, w0:3.38407604, w1:2.96999896, loss:0.25111715
58, w0:3.38719228, w1:2.96862566, loss:0.24996707
59, w0:3.39021314, w1:2.96717595, loss:0.24885253
60, w0:3.39314674, w1:2.96565739, loss:0.24776834
61, w0:3.39600048, w1:2.96407688, loss:0.24671019
62, w0:3.39878107, w1:2.96244066, loss:0.24567453
63, w0:3.40149463, w1:2.96075442, loss:0.24465841
64, w0:3.40414670, w1:2.95902331, loss:0.24365939
65, w0:3.40674234, w1:2.95725202, loss:0.24267546
66, w0:3.40928614, w1:2.95544482, loss:0.24170494
67, w0:3.41178226, w1:2.95360557, loss:0.24074644
68, w0:3.41423450, w1:2.95173778, loss:0.23979882
69, w0:3.41664631, w1:2.94984465, loss:0.23886112
70, w0:3.41902083, w1:2.94792908, loss:0.23793253
71, w0:3.42136091, w1:2.94599370, loss:0.23701241
72, w0:3.42366914, w1:2.94404090, loss:0.23610019
73, w0:3.42594789, w1:2.94207285, loss:0.23519540
74, w0:3.42819929, w1:2.94009152, loss:0.23429768
75, w0:3.43042530, w1:2.93809871, loss:0.23340668
76, w0:3.43262769, w1:2.93609603, loss:0.23252214
77, w0:3.43480808, w1:2.93408497, loss:0.23164382
78, w0:3.43696793, w1:2.93206686, loss:0.23077153
79, w0:3.43910860, w1:2.93004291, loss:0.22990510
80, w0:3.44123128, w1:2.92801424, loss:0.22904438
81, w0:3.44333709, w1:2.92598183, loss:0.22818926
82, w0:3.44542703, w1:2.92394660, loss:0.22733961
83, w0:3.44750203, w1:2.92190938, loss:0.22649536
84, w0:3.44956292, w1:2.91987089, loss:0.22565641
85, w0:3.45161045, w1:2.91783183, loss:0.22482269
86, w0:3.45364533, w1:2.91579280, loss:0.22399414
87, w0:3.45566818, w1:2.91375437, loss:0.22317069
88, w0:3.45767958, w1:2.91171702, loss:0.22235230
89, w0:3.45968005, w1:2.90968123, loss:0.22153891
90, w0:3.46167007, w1:2.90764740, loss:0.22073048
91, w0:3.46365008, w1:2.90561590, loss:0.21992696
92, w0:3.46562048, w1:2.90358707, loss:0.21912831
93, w0:3.46758162, w1:2.90156122, loss:0.21833450
94, w0:3.46953385, w1:2.89953863, loss:0.21754549
95, w0:3.47147746, w1:2.89751953, loss:0.21676124
96, w0:3.47341273, w1:2.89550416, loss:0.21598172
97, w0:3.47533991, w1:2.89349271, loss:0.21520689
98, w0:3.47725923, w1:2.89148538, loss:0.21443674
99, w0:3.47917091, w1:2.88948232, loss:0.21367121
100, w0:3.48107515, w1:2.88748368, loss:0.21291029
101, w0:3.48297211, w1:2.88548960, loss:0.21215395
102, w0:3.48486196, w1:2.88350018, loss:0.21140215
103, w0:3.48674485, w1:2.88151555, loss:0.21065487
104, w0:3.48862093, w1:2.87953579, loss:0.20991208
105, w0:3.49049030, w1:2.87756099, loss:0.20917375
106, w0:3.49235311, w1:2.87559122, loss:0.20843985
107, w0:3.49420944, w1:2.87362655, loss:0.20771036
108, w0:3.49605940, w1:2.87166704, loss:0.20698525
109, w0:3.49790308, w1:2.86971274, loss:0.20626449
110, w0:3.49974056, w1:2.86776370, loss:0.20554806
111, w0:3.50157193, w1:2.86581996, loss:0.20483593
112, w0:3.50339726, w1:2.86388156, loss:0.20412807
113, w0:3.50521661, w1:2.86194851, loss:0.20342446
114, w0:3.50703004, w1:2.86002086, loss:0.20272507
115, w0:3.50883762, w1:2.85809861, loss:0.20202988
116, w0:3.51063940, w1:2.85618180, loss:0.20133886
117, w0:3.51243543, w1:2.85427043, loss:0.20065199
118, w0:3.51422576, w1:2.85236452, loss:0.19996924
119, w0:3.51601043, w1:2.85046407, loss:0.19929059
120, w0:3.51778949, w1:2.84856910, loss:0.19861600
121, w0:3.51956298, w1:2.84667961, loss:0.19794547
122, w0:3.52133093, w1:2.84479560, loss:0.19727896
123, w0:3.52309337, w1:2.84291707, loss:0.19661645
124, w0:3.52485035, w1:2.84104403, loss:0.19595791
125, w0:3.52660190, w1:2.83917647, loss:0.19530333
126, w0:3.52834804, w1:2.83731439, loss:0.19465267
127, w0:3.53008880, w1:2.83545778, loss:0.19400592
128, w0:3.53182422, w1:2.83360663, loss:0.19336305
129, w0:3.53355432, w1:2.83176096, loss:0.19272403
130, w0:3.53527912, w1:2.82992073, loss:0.19208885
131, w0:3.53699865, w1:2.82808595, loss:0.19145748
132, w0:3.53871294, w1:2.82625661, loss:0.19082990
133, w0:3.54042200, w1:2.82443270, loss:0.19020608
134, w0:3.54212586, w1:2.82261421, loss:0.18958601
135, w0:3.54382454, w1:2.82080112, loss:0.18896966
136, w0:3.54551807, w1:2.81899343, loss:0.18835700
137, w0:3.54720645, w1:2.81719113, loss:0.18774802
138, w0:3.54888972, w1:2.81539420, loss:0.18714270
139, w0:3.55056789, w1:2.81360263, loss:0.18654100
140, w0:3.55224098, w1:2.81181640, loss:0.18594292
141, w0:3.55390901, w1:2.81003551, loss:0.18534843
142, w0:3.55557200, w1:2.80825995, loss:0.18475750
143, w0:3.55722996, w1:2.80648969, loss:0.18417012
144, w0:3.55888291, w1:2.80472473, loss:0.18358626
145, w0:3.56053088, w1:2.80296505, loss:0.18300591
146, w0:3.56217387, w1:2.80121063, loss:0.18242904
147, w0:3.56381191, w1:2.79946147, loss:0.18185563
148, w0:3.56544501, w1:2.79771755, loss:0.18128566
149, w0:3.56707319, w1:2.79597886, loss:0.18071911
150, w0:3.56869646, w1:2.79424537, loss:0.18015596
151, w0:3.57031484, w1:2.79251708, loss:0.17959618
152, w0:3.57192835, w1:2.79079397, loss:0.17903977
153, w0:3.57353699, w1:2.78907603, loss:0.17848670
154, w0:3.57514080, w1:2.78736324, loss:0.17793694
155, w0:3.57673978, w1:2.78565559, loss:0.17739048
156, w0:3.57833394, w1:2.78395307, loss:0.17684730
157, w0:3.57992331, w1:2.78225565, loss:0.17630738
158, w0:3.58150790, w1:2.78056332, loss:0.17577070
159, w0:3.58308772, w1:2.77887607, loss:0.17523724
160, w0:3.58466278, w1:2.77719389, loss:0.17470698
161, w0:3.58623311, w1:2.77551676, loss:0.17417991
162, w0:3.58779872, w1:2.77384466, loss:0.17365599
163, w0:3.58935962, w1:2.77217758, loss:0.17313522
164, w0:3.59091582, w1:2.77051551, loss:0.17261757
165, w0:3.59246735, w1:2.76885843, loss:0.17210303
166, w0:3.59401421, w1:2.76720632, loss:0.17159158
167, w0:3.59555642, w1:2.76555918, loss:0.17108319
168, w0:3.59709400, w1:2.76391698, loss:0.17057786
169, w0:3.59862695, w1:2.76227971, loss:0.17007555
170, w0:3.60015530, w1:2.76064737, loss:0.16957626
171, w0:3.60167905, w1:2.75901992, loss:0.16907997
172, w0:3.60319822, w1:2.75739736, loss:0.16858665
173, w0:3.60471282, w1:2.75577968, loss:0.16809630
174, w0:3.60622288, w1:2.75416685, loss:0.16760889
175, w0:3.60772839, w1:2.75255887, loss:0.16712440
176, w0:3.60922938, w1:2.75095572, loss:0.16664281
177, w0:3.61072586, w1:2.74935738, loss:0.16616412
178, w0:3.61221784, w1:2.74776385, loss:0.16568830
179, w0:3.61370534, w1:2.74617510, loss:0.16521534
180, w0:3.61518837, w1:2.74459113, loss:0.16474521
181, w0:3.61666694, w1:2.74301191, loss:0.16427790
182, w0:3.61814107, w1:2.74143744, loss:0.16381340
183, w0:3.61961077, w1:2.73986770, loss:0.16335168
184, w0:3.62107605, w1:2.73830267, loss:0.16289274
185, w0:3.62253693, w1:2.73674235, loss:0.16243655
186, w0:3.62399342, w1:2.73518671, loss:0.16198309
187, w0:3.62544554, w1:2.73363575, loss:0.16153236
188, w0:3.62689329, w1:2.73208944, loss:0.16108433
189, w0:3.62833669, w1:2.73054778, loss:0.16063899
190, w0:3.62977575, w1:2.72901076, loss:0.16019632
191, w0:3.63121049, w1:2.72747835, loss:0.15975630
192, w0:3.63264092, w1:2.72595055, loss:0.15931893
193, w0:3.63406705, w1:2.72442733, loss:0.15888418
194, w0:3.63548889, w1:2.72290869, loss:0.15845204
195, w0:3.63690647, w1:2.72139462, loss:0.15802249
196, w0:3.63831978, w1:2.71988509, loss:0.15759552
197, w0:3.63972885, w1:2.71838010, loss:0.15717112
198, w0:3.64113368, w1:2.71687963, loss:0.15674925
199, w0:3.64253429, w1:2.71538367, loss:0.15632992
200, w0:3.64393070, w1:2.71389220, loss:0.15591311
201, w0:3.64532290, w1:2.71240522, loss:0.15549879
202, w0:3.64671093, w1:2.71092270, loss:0.15508697
203, w0:3.64809478, w1:2.70944463, loss:0.15467761
204, w0:3.64947448, w1:2.70797101, loss:0.15427071
205, w0:3.65085003, w1:2.70650181, loss:0.15386625
206, w0:3.65222145, w1:2.70503703, loss:0.15346422
207, w0:3.65358875, w1:2.70357665, loss:0.15306460
208, w0:3.65495194, w1:2.70212066, loss:0.15266737
209, w0:3.65631103, w1:2.70066904, loss:0.15227254
210, w0:3.65766604, w1:2.69922178, loss:0.15188007
211, w0:3.65901698, w1:2.69777887, loss:0.15148995
212, w0:3.66036386, w1:2.69634030, loss:0.15110218
213, w0:3.66170670, w1:2.69490605, loss:0.15071673
214, w0:3.66304550, w1:2.69347611, loss:0.15033359
215, w0:3.66438027, w1:2.69205046, loss:0.14995276
216, w0:3.66571104, w1:2.69062910, loss:0.14957420
217, w0:3.66703781, w1:2.68921201, loss:0.14919792
218, w0:3.66836059, w1:2.68779917, loss:0.14882390
219, w0:3.66967939, w1:2.68639058, loss:0.14845212
220, w0:3.67099424, w1:2.68498623, loss:0.14808258
221, w0:3.67230513, w1:2.68358609, loss:0.14771525
222, w0:3.67361209, w1:2.68219016, loss:0.14735012
223, w0:3.67491512, w1:2.68079842, loss:0.14698718
224, w0:3.67621423, w1:2.67941087, loss:0.14662643
225, w0:3.67750944, w1:2.67802748, loss:0.14626783
226, w0:3.67880076, w1:2.67664825, loss:0.14591139
227, w0:3.68008820, w1:2.67527316, loss:0.14555709
228, w0:3.68137177, w1:2.67390221, loss:0.14520491
229, w0:3.68265148, w1:2.67253537, loss:0.14485485
230, w0:3.68392735, w1:2.67117264, loss:0.14450688
231, w0:3.68519939, w1:2.66981401, loss:0.14416101
232, w0:3.68646760, w1:2.66845946, loss:0.14381721
233, w0:3.68773201, w1:2.66710898, loss:0.14347547
234, w0:3.68899261, w1:2.66576255, loss:0.14313578
235, w0:3.69024943, w1:2.66442017, loss:0.14279813
236, w0:3.69150247, w1:2.66308182, loss:0.14246251
237, w0:3.69275175, w1:2.66174750, loss:0.14212890
238, w0:3.69399727, w1:2.66041718, loss:0.14179729
239, w0:3.69523905, w1:2.65909086, loss:0.14146767
240, w0:3.69647710, w1:2.65776853, loss:0.14114003
241, w0:3.69771143, w1:2.65645017, loss:0.14081436
242, w0:3.69894205, w1:2.65513577, loss:0.14049064
243, w0:3.70016897, w1:2.65382532, loss:0.14016886
244, w0:3.70139221, w1:2.65251880, loss:0.13984901
245, w0:3.70261177, w1:2.65121621, loss:0.13953108
246, w0:3.70382767, w1:2.64991754, loss:0.13921506
247, w0:3.70503992, w1:2.64862277, loss:0.13890094
248, w0:3.70624852, w1:2.64733188, loss:0.13858870
249, w0:3.70745349, w1:2.64604488, loss:0.13827833
250, w0:3.70865484, w1:2.64476174, loss:0.13796983
251, w0:3.70985258, w1:2.64348246, loss:0.13766317
252, w0:3.71104672, w1:2.64220702, loss:0.13735836
253, w0:3.71223728, w1:2.64093542, loss:0.13705538
254, w0:3.71342426, w1:2.63966763, loss:0.13675421
255, w0:3.71460767, w1:2.63840365, loss:0.13645485
256, w0:3.71578752, w1:2.63714347, loss:0.13615729
257, w0:3.71696384, w1:2.63588708, loss:0.13586151
258, w0:3.71813661, w1:2.63463446, loss:0.13556750
259, w0:3.71930586, w1:2.63338561, loss:0.13527527
260, w0:3.72047160, w1:2.63214051, loss:0.13498478
261, w0:3.72163384, w1:2.63089915, loss:0.13469604
262, w0:3.72279259, w1:2.62966152, loss:0.13440903
263, w0:3.72394785, w1:2.62842760, loss:0.13412374
264, w0:3.72509964, w1:2.62719740, loss:0.13384016
265, w0:3.72624798, w1:2.62597089, loss:0.13355829
266, w0:3.72739286, w1:2.62474806, loss:0.13327810
267, w0:3.72853430, w1:2.62352891, loss:0.13299960
268, w0:3.72967231, w1:2.62231343, loss:0.13272277
269, w0:3.73080691, w1:2.62110159, loss:0.13244760
270, w0:3.73193809, w1:2.61989340, loss:0.13217408
271, w0:3.73306588, w1:2.61868883, loss:0.13190220
272, w0:3.73419028, w1:2.61748789, loss:0.13163195
273, w0:3.73531129, w1:2.61629055, loss:0.13136333
274, w0:3.73642895, w1:2.61509681, loss:0.13109631
275, w0:3.73754324, w1:2.61390666, loss:0.13083090
276, w0:3.73865418, w1:2.61272008, loss:0.13056708
277, w0:3.73976179, w1:2.61153707, loss:0.13030484
278, w0:3.74086607, w1:2.61035761, loss:0.13004418
279, w0:3.74196703, w1:2.60918170, loss:0.12978508
280, w0:3.74306469, w1:2.60800932, loss:0.12952754
281, w0:3.74415904, w1:2.60684046, loss:0.12927154
282, w0:3.74525011, w1:2.60567511, loss:0.12901707
283, w0:3.74633790, w1:2.60451327, loss:0.12876414
284, w0:3.74742242, w1:2.60335492, loss:0.12851272
285, w0:3.74850368, w1:2.60220004, loss:0.12826281
286, w0:3.74958170, w1:2.60104864, loss:0.12801440
287, w0:3.75065647, w1:2.59990069, loss:0.12776748
288, w0:3.75172802, w1:2.59875620, loss:0.12752204
289, w0:3.75279634, w1:2.59761514, loss:0.12727807
290, w0:3.75386146, w1:2.59647751, loss:0.12703557
291, w0:3.75492338, w1:2.59534330, loss:0.12679452
292, w0:3.75598210, w1:2.59421250, loss:0.12655492
293, w0:3.75703765, w1:2.59308510, loss:0.12631676
294, w0:3.75809002, w1:2.59196108, loss:0.12608002
295, w0:3.75913923, w1:2.59084044, loss:0.12584471
296, w0:3.76018529, w1:2.58972316, loss:0.12561081
297, w0:3.76122821, w1:2.58860925, loss:0.12537831
298, w0:3.76226799, w1:2.58749868, loss:0.12514721
299, w0:3.76330465, w1:2.58639144, loss:0.12491749
300, w0:3.76433819, w1:2.58528754, loss:0.12468915
301, w0:3.76536863, w1:2.58418695, loss:0.12446218
302, w0:3.76639597, w1:2.58308966, loss:0.12423658
303, w0:3.76742023, w1:2.58199568, loss:0.12401232
304, w0:3.76844141, w1:2.58090498, loss:0.12378941
305, w0:3.76945952, w1:2.57981756, loss:0.12356784
306, w0:3.77047457, w1:2.57873340, loss:0.12334760
307, w0:3.77148657, w1:2.57765251, loss:0.12312868
308, w0:3.77249553, w1:2.57657486, loss:0.12291108
309, w0:3.77350146, w1:2.57550044, loss:0.12269478
310, w0:3.77450437, w1:2.57442926, loss:0.12247978
311, w0:3.77550427, w1:2.57336129, loss:0.12226606
312, w0:3.77650115, w1:2.57229654, loss:0.12205363
313, w0:3.77749505, w1:2.57123498, loss:0.12184248
314, w0:3.77848596, w1:2.57017661, loss:0.12163259
315, w0:3.77947389, w1:2.56912142, loss:0.12142396
316, w0:3.78045885, w1:2.56806940, loss:0.12121658
317, w0:3.78144086, w1:2.56702055, loss:0.12101045
318, w0:3.78241991, w1:2.56597484, loss:0.12080555
319, w0:3.78339602, w1:2.56493228, loss:0.12060189
320, w0:3.78436920, w1:2.56389285, loss:0.12039944
321, w0:3.78533945, w1:2.56285654, loss:0.12019821
322, w0:3.78630679, w1:2.56182334, loss:0.11999819
323, w0:3.78727123, w1:2.56079325, loss:0.11979937
324, w0:3.78823276, w1:2.55976626, loss:0.11960174
325, w0:3.78919141, w1:2.55874235, loss:0.11940529
326, w0:3.79014718, w1:2.55772151, loss:0.11921003
327, w0:3.79110007, w1:2.55670375, loss:0.11901593
328, w0:3.79205010, w1:2.55568904, loss:0.11882300
329, w0:3.79299728, w1:2.55467738, loss:0.11863123
330, w0:3.79394161, w1:2.55366876, loss:0.11844061
331, w0:3.79488310, w1:2.55266317, loss:0.11825113
332, w0:3.79582177, w1:2.55166060, loss:0.11806279
333, w0:3.79675762, w1:2.55066104, loss:0.11787558
334, w0:3.79769065, w1:2.54966449, loss:0.11768950
335, w0:3.79862088, w1:2.54867093, loss:0.11750453
336, w0:3.79954831, w1:2.54768036, loss:0.11732067
337, w0:3.80047296, w1:2.54669276, loss:0.11713791
338, w0:3.80139483, w1:2.54570813, loss:0.11695625
339, w0:3.80231393, w1:2.54472646, loss:0.11677568
340, w0:3.80323027, w1:2.54374773, loss:0.11659619
341, w0:3.80414386, w1:2.54277195, loss:0.11641778
342, w0:3.80505470, w1:2.54179910, loss:0.11624044
343, w0:3.80596280, w1:2.54082917, loss:0.11606416
344, w0:3.80686818, w1:2.53986216, loss:0.11588894
345, w0:3.80777084, w1:2.53889805, loss:0.11571478
346, w0:3.80867078, w1:2.53793684, loss:0.11554166
347, w0:3.80956802, w1:2.53697852, loss:0.11536957
348, w0:3.81046256, w1:2.53602308, loss:0.11519852
349, w0:3.81135442, w1:2.53507050, loss:0.11502850
350, w0:3.81224360, w1:2.53412079, loss:0.11485949
351, w0:3.81313010, w1:2.53317394, loss:0.11469150
352, w0:3.81401394, w1:2.53222992, loss:0.11452452
353, w0:3.81489513, w1:2.53128875, loss:0.11435854
354, w0:3.81577367, w1:2.53035040, loss:0.11419355
355, w0:3.81664957, w1:2.52941487, loss:0.11402956
356, w0:3.81752284, w1:2.52848215, loss:0.11386655
357, w0:3.81839348, w1:2.52755224, loss:0.11370452
358, w0:3.81926151, w1:2.52662511, loss:0.11354346
359, w0:3.82012693, w1:2.52570078, loss:0.11338336
360, w0:3.82098975, w1:2.52477922, loss:0.11322423
361, w0:3.82184997, w1:2.52386043, loss:0.11306605
362, w0:3.82270762, w1:2.52294440, loss:0.11290882
363, w0:3.82356268, w1:2.52203112, loss:0.11275253
364, w0:3.82441518, w1:2.52112059, loss:0.11259719
365, w0:3.82526511, w1:2.52021279, loss:0.11244277
366, w0:3.82611249, w1:2.51930772, loss:0.11228928
367, w0:3.82695733, w1:2.51840537, loss:0.11213671
368, w0:3.82779963, w1:2.51750573, loss:0.11198506
369, w0:3.82863939, w1:2.51660879, loss:0.11183431
370, w0:3.82947664, w1:2.51571455, loss:0.11168447
371, w0:3.83031137, w1:2.51482299, loss:0.11153553
372, w0:3.83114359, w1:2.51393412, loss:0.11138749
373, w0:3.83197330, w1:2.51304791, loss:0.11124033
374, w0:3.83280053, w1:2.51216437, loss:0.11109406
375, w0:3.83362527, w1:2.51128348, loss:0.11094866
376, w0:3.83444754, w1:2.51040524, loss:0.11080413
377, w0:3.83526733, w1:2.50952964, loss:0.11066047
378, w0:3.83608466, w1:2.50865666, loss:0.11051768
379, w0:3.83689953, w1:2.50778631, loss:0.11037574
380, w0:3.83771196, w1:2.50691858, loss:0.11023465
381, w0:3.83852194, w1:2.50605345, loss:0.11009441
382, w0:3.83932949, w1:2.50519092, loss:0.10995501
383, w0:3.84013462, w1:2.50433099, loss:0.10981645
384, w0:3.84093732, w1:2.50347363, loss:0.10967872
385, w0:3.84173762, w1:2.50261886, loss:0.10954181
386, w0:3.84253551, w1:2.50176665, loss:0.10940573
387, w0:3.84333100, w1:2.50091700, loss:0.10927046
388, w0:3.84412410, w1:2.50006991, loss:0.10913600
389, w0:3.84491482, w1:2.49922536, loss:0.10900235
390, w0:3.84570316, w1:2.49838334, loss:0.10886951
391, w0:3.84648914, w1:2.49754386, loss:0.10873746
392, w0:3.84727275, w1:2.49670690, loss:0.10860620
393, w0:3.84805401, w1:2.49587245, loss:0.10847573
394, w0:3.84883292, w1:2.49504051, loss:0.10834604
395, w0:3.84960949, w1:2.49421107, loss:0.10821713
396, w0:3.85038373, w1:2.49338413, loss:0.10808900
397, w0:3.85115564, w1:2.49255967, loss:0.10796163
398, w0:3.85192524, w1:2.49173768, loss:0.10783503
399, w0:3.85269252, w1:2.49091816, loss:0.10770918
400, w0:3.85345749, w1:2.49010111, loss:0.10758410
401, w0:3.85422017, w1:2.48928651, loss:0.10745976
402, w0:3.85498055, w1:2.48847436, loss:0.10733617
403, w0:3.85573865, w1:2.48766465, loss:0.10721332
404, w0:3.85649448, w1:2.48685737, loss:0.10709120
405, w0:3.85724803, w1:2.48605252, loss:0.10696982
406, w0:3.85799932, w1:2.48525008, loss:0.10684917
407, w0:3.85874835, w1:2.48445006, loss:0.10672924
408, w0:3.85949513, w1:2.48365244, loss:0.10661003
409, w0:3.86023966, w1:2.48285722, loss:0.10649154
410, w0:3.86098196, w1:2.48206438, loss:0.10637376
411, w0:3.86172203, w1:2.48127393, loss:0.10625668
412, w0:3.86245988, w1:2.48048585, loss:0.10614031
413, w0:3.86319551, w1:2.47970014, loss:0.10602464
414, w0:3.86392892, w1:2.47891680, loss:0.10590966
415, w0:3.86466014, w1:2.47813580, loss:0.10579536
416, w0:3.86538916, w1:2.47735715, loss:0.10568176
417, w0:3.86611598, w1:2.47658084, loss:0.10556884
418, w0:3.86684063, w1:2.47580687, loss:0.10545659
419, w0:3.86756309, w1:2.47503522, loss:0.10534502
420, w0:3.86828339, w1:2.47426588, loss:0.10523411
421, w0:3.86900152, w1:2.47349886, loss:0.10512388
422, w0:3.86971750, w1:2.47273415, loss:0.10501430
423, w0:3.87043132, w1:2.47197173, loss:0.10490538
424, w0:3.87114300, w1:2.47121160, loss:0.10479712
425, w0:3.87185254, w1:2.47045375, loss:0.10468950
426, w0:3.87255994, w1:2.46969819, loss:0.10458253
427, w0:3.87326523, w1:2.46894489, loss:0.10447620
428, w0:3.87396839, w1:2.46819385, loss:0.10437051
429, w0:3.87466944, w1:2.46744508, loss:0.10426546
430, w0:3.87536839, w1:2.46669855, loss:0.10416103
431, w0:3.87606523, w1:2.46595426, loss:0.10405723
432, w0:3.87675998, w1:2.46521222, loss:0.10395406
433, w0:3.87745264, w1:2.46447240, loss:0.10385150
434, w0:3.87814323, w1:2.46373480, loss:0.10374956
435, w0:3.87883173, w1:2.46299942, loss:0.10364823
436, w0:3.87951817, w1:2.46226625, loss:0.10354750
437, w0:3.88020255, w1:2.46153528, loss:0.10344739
438, w0:3.88088487, w1:2.46080651, loss:0.10334787
439, w0:3.88156514, w1:2.46007993, loss:0.10324895
440, w0:3.88224337, w1:2.45935553, loss:0.10315062
441, w0:3.88291955, w1:2.45863331, loss:0.10305289
442, w0:3.88359371, w1:2.45791325, loss:0.10295574
443, w0:3.88426584, w1:2.45719536, loss:0.10285917
444, w0:3.88493595, w1:2.45647963, loss:0.10276318
445, w0:3.88560405, w1:2.45576605, loss:0.10266777
446, w0:3.88627014, w1:2.45505461, loss:0.10257293
447, w0:3.88693423, w1:2.45434531, loss:0.10247866
448, w0:3.88759633, w1:2.45363814, loss:0.10238495
449, w0:3.88825643, w1:2.45293310, loss:0.10229181
450, w0:3.88891456, w1:2.45223017, loss:0.10219923
451, w0:3.88957070, w1:2.45152936, loss:0.10210720
452, w0:3.89022487, w1:2.45083065, loss:0.10201572
453, w0:3.89087708, w1:2.45013404, loss:0.10192480
454, w0:3.89152733, w1:2.44943953, loss:0.10183442
455, w0:3.89217562, w1:2.44874710, loss:0.10174458
456, w0:3.89282197, w1:2.44805675, loss:0.10165528
457, w0:3.89346637, w1:2.44736847, loss:0.10156651
458, w0:3.89410884, w1:2.44668226, loss:0.10147828
459, w0:3.89474938, w1:2.44599812, loss:0.10139058
460, w0:3.89538800, w1:2.44531603, loss:0.10130340
461, w0:3.89602469, w1:2.44463599, loss:0.10121675
462, w0:3.89665947, w1:2.44395799, loss:0.10113061
463, w0:3.89729235, w1:2.44328203, loss:0.10104500
464, w0:3.89792332, w1:2.44260810, loss:0.10095990
465, w0:3.89855240, w1:2.44193620, loss:0.10087530
466, w0:3.89917958, w1:2.44126631, loss:0.10079122
467, w0:3.89980489, w1:2.44059844, loss:0.10070764
468, w0:3.90042831, w1:2.43993257, loss:0.10062456
469, w0:3.90104986, w1:2.43926871, loss:0.10054198
470, w0:3.90166955, w1:2.43860684, loss:0.10045990
471, w0:3.90228737, w1:2.43794696, loss:0.10037830
472, w0:3.90290333, w1:2.43728906, loss:0.10029720
473, w0:3.90351745, w1:2.43663313, loss:0.10021659
474, w0:3.90412972, w1:2.43597918, loss:0.10013645
475, w0:3.90474015, w1:2.43532719, loss:0.10005680
476, w0:3.90534874, w1:2.43467717, loss:0.09997763
477, w0:3.90595551, w1:2.43402909, loss:0.09989893
478, w0:3.90656046, w1:2.43338296, loss:0.09982070
479, w0:3.90716358, w1:2.43273877, loss:0.09974295
480, w0:3.90776490, w1:2.43209652, loss:0.09966566
481, w0:3.90836441, w1:2.43145620, loss:0.09958883
482, w0:3.90896211, w1:2.43081780, loss:0.09951246
483, w0:3.90955802, w1:2.43018132, loss:0.09943656
484, w0:3.91015214, w1:2.42954676, loss:0.09936110
485, w0:3.91074448, w1:2.42891409, loss:0.09928611
486, w0:3.91133504, w1:2.42828333, loss:0.09921156
487, w0:3.91192382, w1:2.42765447, loss:0.09913745
488, w0:3.91251083, w1:2.42702749, loss:0.09906380
489, w0:3.91309608, w1:2.42640240, loss:0.09899058
490, w0:3.91367957, w1:2.42577919, loss:0.09891780
491, w0:3.91426131, w1:2.42515785, loss:0.09884547
492, w0:3.91484130, w1:2.42453837, loss:0.09877356
493, w0:3.91541954, w1:2.42392076, loss:0.09870209
494, w0:3.91599605, w1:2.42330500, loss:0.09863104
495, w0:3.91657083, w1:2.42269110, loss:0.09856042
496, w0:3.91714388, w1:2.42207903, loss:0.09849023
497, w0:3.91771521, w1:2.42146881, loss:0.09842045
498, w0:3.91828482, w1:2.42086042, loss:0.09835110
499, w0:3.91885272, w1:2.42025386, loss:0.09828216
500, w0:3.91941892, w1:2.41964912, loss:0.09821363
501, w0:3.91998341, w1:2.41904619, loss:0.09814552
502, w0:3.92054621, w1:2.41844508, loss:0.09807781
503, w0:3.92110731, w1:2.41784577, loss:0.09801051
504, w0:3.92166673, w1:2.41724827, loss:0.09794362
505, w0:3.92222447, w1:2.41665256, loss:0.09787712
506, w0:3.92278054, w1:2.41605864, loss:0.09781103
507, w0:3.92333493, w1:2.41546650, loss:0.09774533
508, w0:3.92388766, w1:2.41487615, loss:0.09768002
509, w0:3.92443872, w1:2.41428757, loss:0.09761511
510, w0:3.92498813, w1:2.41370075, loss:0.09755059
511, w0:3.92553589, w1:2.41311570, loss:0.09748645
512, w0:3.92608201, w1:2.41253241, loss:0.09742270
513, w0:3.92662648, w1:2.41195087, loss:0.09735933
514, w0:3.92716932, w1:2.41137107, loss:0.09729634
515, w0:3.92771053, w1:2.41079302, loss:0.09723373
516, w0:3.92825011, w1:2.41021671, loss:0.09717150
517, w0:3.92878807, w1:2.40964212, loss:0.09710964
518, w0:3.92932441, w1:2.40906927, loss:0.09704815
519, w0:3.92985914, w1:2.40849813, loss:0.09698702
520, w0:3.93039227, w1:2.40792871, loss:0.09692627
521, w0:3.93092379, w1:2.40736100, loss:0.09686588
522, w0:3.93145372, w1:2.40679500, loss:0.09680585
523, w0:3.93198205, w1:2.40623070, loss:0.09674618
524, w0:3.93250880, w1:2.40566809, loss:0.09668687
525, w0:3.93303396, w1:2.40510717, loss:0.09662792
526, w0:3.93355755, w1:2.40454794, loss:0.09656932
527, w0:3.93407956, w1:2.40399039, loss:0.09651107
528, w0:3.93460001, w1:2.40343451, loss:0.09645317
529, w0:3.93511889, w1:2.40288031, loss:0.09639562
530, w0:3.93563621, w1:2.40232777, loss:0.09633842
531, w0:3.93615198, w1:2.40177689, loss:0.09628155
532, w0:3.93666619, w1:2.40122766, loss:0.09622503
533, w0:3.93717887, w1:2.40068009, loss:0.09616885
534, w0:3.93769000, w1:2.40013416, loss:0.09611300
535, w0:3.93819960, w1:2.39958987, loss:0.09605749
536, w0:3.93870766, w1:2.39904721, loss:0.09600231
537, w0:3.93921420, w1:2.39850619, loss:0.09594747
538, w0:3.93971922, w1:2.39796679, loss:0.09589295
539, w0:3.94022272, w1:2.39742901, loss:0.09583876
540, w0:3.94072471, w1:2.39689285, loss:0.09578490
541, w0:3.94122519, w1:2.39635830, loss:0.09573135
542, w0:3.94172416, w1:2.39582535, loss:0.09567813
543, w0:3.94222164, w1:2.39529401, loss:0.09562523
544, w0:3.94271762, w1:2.39476426, loss:0.09557265
545, w0:3.94321211, w1:2.39423611, loss:0.09552038
546, w0:3.94370512, w1:2.39370954, loss:0.09546842
547, w0:3.94419664, w1:2.39318455, loss:0.09541678
548, w0:3.94468669, w1:2.39266114, loss:0.09536545
549, w0:3.94517527, w1:2.39213931, loss:0.09531442
550, w0:3.94566237, w1:2.39161904, loss:0.09526370
551, w0:3.94614802, w1:2.39110033, loss:0.09521329
552, w0:3.94663220, w1:2.39058318, loss:0.09516318
553, w0:3.94711493, w1:2.39006759, loss:0.09511337
554, w0:3.94759621, w1:2.38955355, loss:0.09506385
555, w0:3.94807604, w1:2.38904105, loss:0.09501464
556, w0:3.94855444, w1:2.38853009, loss:0.09496572
557, w0:3.94903139, w1:2.38802066, loss:0.09491709
558, w0:3.94950691, w1:2.38751277, loss:0.09486876
559, w0:3.94998100, w1:2.38700640, loss:0.09482071
560, w0:3.95045367, w1:2.38650155, loss:0.09477295
561, w0:3.95092492, w1:2.38599822, loss:0.09472548
562, w0:3.95139475, w1:2.38549640, loss:0.09467830
563, w0:3.95186317, w1:2.38499609, loss:0.09463140
564, w0:3.95233019, w1:2.38449729, loss:0.09458478
565, w0:3.95279580, w1:2.38399998, loss:0.09453843
566, w0:3.95326001, w1:2.38350416, loss:0.09449237
567, w0:3.95372282, w1:2.38300984, loss:0.09444658
568, w0:3.95418425, w1:2.38251700, loss:0.09440107
569, w0:3.95464429, w1:2.38202564, loss:0.09435583
570, w0:3.95510295, w1:2.38153576, loss:0.09431087
571, w0:3.95556023, w1:2.38104735, loss:0.09426617
572, w0:3.95601613, w1:2.38056041, loss:0.09422174
573, w0:3.95647067, w1:2.38007493, loss:0.09417758
574, w0:3.95692384, w1:2.37959091, loss:0.09413368
575, w0:3.95737565, w1:2.37910834, loss:0.09409004
576, w0:3.95782610, w1:2.37862722, loss:0.09404667
577, w0:3.95827519, w1:2.37814755, loss:0.09400356
578, w0:3.95872294, w1:2.37766932, loss:0.09396070
579, w0:3.95916934, w1:2.37719253, loss:0.09391811
580, w0:3.95961441, w1:2.37671717, loss:0.09387577
581, w0:3.96005813, w1:2.37624323, loss:0.09383368
582, w0:3.96050052, w1:2.37577072, loss:0.09379185
583, w0:3.96094158, w1:2.37529964, loss:0.09375026
584, w0:3.96138132, w1:2.37482996, loss:0.09370893
585, w0:3.96181974, w1:2.37436170, loss:0.09366784
586, w0:3.96225683, w1:2.37389484, loss:0.09362700
587, w0:3.96269262, w1:2.37342939, loss:0.09358641
588, w0:3.96312710, w1:2.37296534, loss:0.09354606
589, w0:3.96356027, w1:2.37250268, loss:0.09350595
590, w0:3.96399213, w1:2.37204141, loss:0.09346608
591, w0:3.96442271, w1:2.37158152, loss:0.09342645
592, w0:3.96485198, w1:2.37112302, loss:0.09338706
593, w0:3.96527997, w1:2.37066590, loss:0.09334791
594, w0:3.96570667, w1:2.37021014, loss:0.09330899
595, w0:3.96613209, w1:2.36975576, loss:0.09327030
596, w0:3.96655624, w1:2.36930275, loss:0.09323185
597, w0:3.96697910, w1:2.36885109, loss:0.09319362
598, w0:3.96740070, w1:2.36840079, loss:0.09315563
599, w0:3.96782103, w1:2.36795185, loss:0.09311786
600, w0:3.96824010, w1:2.36750425, loss:0.09308032
601, w0:3.96865791, w1:2.36705800, loss:0.09304301
602, w0:3.96907446, w1:2.36661308, loss:0.09300592
603, w0:3.96948976, w1:2.36616951, loss:0.09296905
604, w0:3.96990381, w1:2.36572727, loss:0.09293240
605, w0:3.97031662, w1:2.36528636, loss:0.09289598
606, w0:3.97072819, w1:2.36484677, loss:0.09285977
607, w0:3.97113852, w1:2.36440850, loss:0.09282378
608, w0:3.97154762, w1:2.36397155, loss:0.09278800
609, w0:3.97195550, w1:2.36353591, loss:0.09275244
610, w0:3.97236214, w1:2.36310158, loss:0.09271709
611, w0:3.97276756, w1:2.36266856, loss:0.09268196
612, w0:3.97317177, w1:2.36223683, loss:0.09264704
613, w0:3.97357476, w1:2.36180641, loss:0.09261232
614, w0:3.97397654, w1:2.36137728, loss:0.09257781
615, w0:3.97437711, w1:2.36094943, loss:0.09254352
616, w0:3.97477648, w1:2.36052287, loss:0.09250942
617, w0:3.97517465, w1:2.36009760, loss:0.09247553
618, w0:3.97557162, w1:2.35967360, loss:0.09244185
619, w0:3.97596740, w1:2.35925088, loss:0.09240836
620, w0:3.97636200, w1:2.35882942, loss:0.09237508
621, w0:3.97675540, w1:2.35840923, loss:0.09234200
622, w0:3.97714763, w1:2.35799031, loss:0.09230911
623, w0:3.97753867, w1:2.35757264, loss:0.09227643
624, w0:3.97792854, w1:2.35715623, loss:0.09224394
625, w0:3.97831724, w1:2.35674107, loss:0.09221164
626, w0:3.97870477, w1:2.35632715, loss:0.09217954
627, w0:3.97909114, w1:2.35591448, loss:0.09214763
628, w0:3.97947634, w1:2.35550305, loss:0.09211591
629, w0:3.97986039, w1:2.35509286, loss:0.09208438
630, w0:3.98024329, w1:2.35468390, loss:0.09205304
631, w0:3.98062503, w1:2.35427616, loss:0.09202189
632, w0:3.98100563, w1:2.35386966, loss:0.09199093
633, w0:3.98138508, w1:2.35346437, loss:0.09196015
634, w0:3.98176340, w1:2.35306030, loss:0.09192956
635, w0:3.98214057, w1:2.35265745, loss:0.09189915
636, w0:3.98251662, w1:2.35225580, loss:0.09186892
637, w0:3.98289153, w1:2.35185536, loss:0.09183888
638, w0:3.98326532, w1:2.35145613, loss:0.09180901
639, w0:3.98363798, w1:2.35105810, loss:0.09177932
640, w0:3.98400953, w1:2.35066126, loss:0.09174982
641, w0:3.98437996, w1:2.35026561, loss:0.09172048
642, w0:3.98474927, w1:2.34987115, loss:0.09169133
643, w0:3.98511748, w1:2.34947788, loss:0.09166235
644, w0:3.98548458, w1:2.34908579, loss:0.09163354
645, w0:3.98585057, w1:2.34869487, loss:0.09160491
646, w0:3.98621547, w1:2.34830514, loss:0.09157645
647, w0:3.98657927, w1:2.34791657, loss:0.09154816
648, w0:3.98694198, w1:2.34752917, loss:0.09152003
649, w0:3.98730360, w1:2.34714293, loss:0.09149208
650, w0:3.98766413, w1:2.34675786, loss:0.09146430
651, w0:3.98802357, w1:2.34637394, loss:0.09143668
652, w0:3.98838194, w1:2.34599117, loss:0.09140923
653, w0:3.98873923, w1:2.34560956, loss:0.09138194
654, w0:3.98909545, w1:2.34522909, loss:0.09135481
655, w0:3.98945060, w1:2.34484976, loss:0.09132785
656, w0:3.98980468, w1:2.34447158, loss:0.09130105
657, w0:3.99015770, w1:2.34409453, loss:0.09127442
658, w0:3.99050965, w1:2.34371861, loss:0.09124794
659, w0:3.99086055, w1:2.34334382, loss:0.09122162
660, w0:3.99121040, w1:2.34297016, loss:0.09119545
661, w0:3.99155919, w1:2.34259762, loss:0.09116945
662, w0:3.99190693, w1:2.34222620, loss:0.09114360
663, w0:3.99225363, w1:2.34185590, loss:0.09111791
664, w0:3.99259929, w1:2.34148671, loss:0.09109237
665, w0:3.99294391, w1:2.34111863, loss:0.09106698
666, w0:3.99328750, w1:2.34075165, loss:0.09104175
667, w0:3.99363005, w1:2.34038578, loss:0.09101666
668, w0:3.99397157, w1:2.34002101, loss:0.09099173
669, w0:3.99431207, w1:2.33965733, loss:0.09096695
670, w0:3.99465154, w1:2.33929474, loss:0.09094231
671, w0:3.99499000, w1:2.33893325, loss:0.09091783
672, w0:3.99532744, w1:2.33857284, loss:0.09089349
673, w0:3.99566386, w1:2.33821351, loss:0.09086930
674, w0:3.99599927, w1:2.33785526, loss:0.09084525
675, w0:3.99633368, w1:2.33749809, loss:0.09082134
676, w0:3.99666708, w1:2.33714200, loss:0.09079758
677, w0:3.99699947, w1:2.33678697, loss:0.09077397
678, w0:3.99733087, w1:2.33643301, loss:0.09075049
679, w0:3.99766128, w1:2.33608011, loss:0.09072715
680, w0:3.99799069, w1:2.33572827, loss:0.09070396
681, w0:3.99831911, w1:2.33537749, loss:0.09068090
682, w0:3.99864655, w1:2.33502777, loss:0.09065799
683, w0:3.99897300, w1:2.33467909, loss:0.09063521
684, w0:3.99929847, w1:2.33433146, loss:0.09061256
685, w0:3.99962296, w1:2.33398488, loss:0.09059005
686, w0:3.99994648, w1:2.33363934, loss:0.09056768
687, w0:4.00026902, w1:2.33329484, loss:0.09054544
688, w0:4.00059060, w1:2.33295137, loss:0.09052334
689, w0:4.00091121, w1:2.33260893, loss:0.09050137
690, w0:4.00123085, w1:2.33226752, loss:0.09047953
691, w0:4.00154954, w1:2.33192714, loss:0.09045782
692, w0:4.00186727, w1:2.33158778, loss:0.09043624
693, w0:4.00218404, w1:2.33124944, loss:0.09041479
694, w0:4.00249987, w1:2.33091212, loss:0.09039347
695, w0:4.00281474, w1:2.33057581, loss:0.09037227
696, w0:4.00312867, w1:2.33024051, loss:0.09035121
697, w0:4.00344165, w1:2.32990622, loss:0.09033027
698, w0:4.00375369, w1:2.32957293, loss:0.09030945
699, w0:4.00406480, w1:2.32924064, loss:0.09028877
700, w0:4.00437497, w1:2.32890936, loss:0.09026820
701, w0:4.00468421, w1:2.32857906, loss:0.09024776
702, w0:4.00499252, w1:2.32824976, loss:0.09022744
703, w0:4.00529991, w1:2.32792145, loss:0.09020724
704, w0:4.00560637, w1:2.32759413, loss:0.09018717
705, w0:4.00591191, w1:2.32726779, loss:0.09016721
706, w0:4.00621653, w1:2.32694243, loss:0.09014738
707, w0:4.00652024, w1:2.32661805, loss:0.09012766
708, w0:4.00682303, w1:2.32629464, loss:0.09010806
709, w0:4.00712492, w1:2.32597220, loss:0.09008858
710, w0:4.00742589, w1:2.32565073, loss:0.09006922
711, w0:4.00772597, w1:2.32533023, loss:0.09004997
712, w0:4.00802514, w1:2.32501069, loss:0.09003084
713, w0:4.00832341, w1:2.32469211, loss:0.09001182
714, w0:4.00862079, w1:2.32437449, loss:0.08999292
715, w0:4.00891727, w1:2.32405783, loss:0.08997413
716, w0:4.00921286, w1:2.32374211, loss:0.08995545
717, w0:4.00950757, w1:2.32342734, loss:0.08993689
718, w0:4.00980138, w1:2.32311352, loss:0.08991843
719, w0:4.01009432, w1:2.32280064, loss:0.08990009
720, w0:4.01038638, w1:2.32248870, loss:0.08988186
721, w0:4.01067755, w1:2.32217770, loss:0.08986373
722, w0:4.01096786, w1:2.32186764, loss:0.08984572
723, w0:4.01125729, w1:2.32155850, loss:0.08982781
724, w0:4.01154585, w1:2.32125029, loss:0.08981001
725, w0:4.01183354, w1:2.32094301, loss:0.08979232
726, w0:4.01212037, w1:2.32063666, loss:0.08977473
727, w0:4.01240634, w1:2.32033122, loss:0.08975725
728, w0:4.01269145, w1:2.32002670, loss:0.08973988
729, w0:4.01297570, w1:2.31972310, loss:0.08972261
730, w0:4.01325910, w1:2.31942041, loss:0.08970544
731, w0:4.01354165, w1:2.31911862, loss:0.08968837
732, w0:4.01382335, w1:2.31881775, loss:0.08967141
733, w0:4.01410420, w1:2.31851778, loss:0.08965455
734, w0:4.01438421, w1:2.31821870, loss:0.08963779
735, w0:4.01466337, w1:2.31792053, loss:0.08962113
736, w0:4.01494170, w1:2.31762326, loss:0.08960457
737, w0:4.01521919, w1:2.31732687, loss:0.08958811
738, w0:4.01549585, w1:2.31703138, loss:0.08957175
739, w0:4.01577168, w1:2.31673678, loss:0.08955549
740, w0:4.01604668, w1:2.31644306, loss:0.08953932
741, w0:4.01632085, w1:2.31615022, loss:0.08952326
742, w0:4.01659420, w1:2.31585826, loss:0.08950728
743, w0:4.01686672, w1:2.31556718, loss:0.08949141
744, w0:4.01713843, w1:2.31527698, loss:0.08947563
745, w0:4.01740932, w1:2.31498765, loss:0.08945994
746, w0:4.01767940, w1:2.31469918, loss:0.08944435
747, w0:4.01794867, w1:2.31441158, loss:0.08942885
748, w0:4.01821712, w1:2.31412485, loss:0.08941345
749, w0:4.01848477, w1:2.31383898, loss:0.08939813
750, w0:4.01875162, w1:2.31355397, loss:0.08938291
751, w0:4.01901766, w1:2.31326981, loss:0.08936778
752, w0:4.01928291, w1:2.31298651, loss:0.08935274
753, w0:4.01954736, w1:2.31270405, loss:0.08933780
754, w0:4.01981101, w1:2.31242245, loss:0.08932294
755, w0:4.02007387, w1:2.31214170, loss:0.08930817
756, w0:4.02033594, w1:2.31186178, loss:0.08929348
757, w0:4.02059723, w1:2.31158271, loss:0.08927889
758, w0:4.02085773, w1:2.31130448, loss:0.08926439
759, w0:4.02111744, w1:2.31102708, loss:0.08924997
760, w0:4.02137638, w1:2.31075051, loss:0.08923564
761, w0:4.02163454, w1:2.31047478, loss:0.08922139
762, w0:4.02189192, w1:2.31019987, loss:0.08920723
763, w0:4.02214853, w1:2.30992580, loss:0.08919315
764, w0:4.02240437, w1:2.30965254, loss:0.08917916
765, w0:4.02265944, w1:2.30938011, loss:0.08916526
766, w0:4.02291374, w1:2.30910849, loss:0.08915143
767, w0:4.02316728, w1:2.30883769, loss:0.08913769
768, w0:4.02342006, w1:2.30856770, loss:0.08912403
769, w0:4.02367208, w1:2.30829853, loss:0.08911046
770, w0:4.02392334, w1:2.30803016, loss:0.08909696
771, w0:4.02417384, w1:2.30776260, loss:0.08908355
772, w0:4.02442360, w1:2.30749585, loss:0.08907021
773, w0:4.02467260, w1:2.30722989, loss:0.08905696
774, w0:4.02492086, w1:2.30696474, loss:0.08904379
775, w0:4.02516836, w1:2.30670038, loss:0.08903069
776, w0:4.02541513, w1:2.30643681, loss:0.08901767
777, w0:4.02566115, w1:2.30617404, loss:0.08900474
778, w0:4.02590644, w1:2.30591206, loss:0.08899188
779, w0:4.02615099, w1:2.30565086, loss:0.08897909
780, w0:4.02639480, w1:2.30539045, loss:0.08896639
781, w0:4.02663788, w1:2.30513082, loss:0.08895376
782, w0:4.02688023, w1:2.30487197, loss:0.08894120
783, w0:4.02712185, w1:2.30461390, loss:0.08892872
784, w0:4.02736275, w1:2.30435660, loss:0.08891632
785, w0:4.02760292, w1:2.30410008, loss:0.08890399
786, w0:4.02784237, w1:2.30384433, loss:0.08889173
787, w0:4.02808110, w1:2.30358935, loss:0.08887955
788, w0:4.02831911, w1:2.30333513, loss:0.08886744
789, w0:4.02855641, w1:2.30308167, loss:0.08885540
790, w0:4.02879300, w1:2.30282898, loss:0.08884344
791, w0:4.02902887, w1:2.30257705, loss:0.08883154
792, w0:4.02926404, w1:2.30232587, loss:0.08881972
793, w0:4.02949850, w1:2.30207545, loss:0.08880797
794, w0:4.02973225, w1:2.30182578, loss:0.08879629
795, w0:4.02996531, w1:2.30157686, loss:0.08878468
796, w0:4.03019766, w1:2.30132869, loss:0.08877314
797, w0:4.03042931, w1:2.30108127, loss:0.08876167
798, w0:4.03066027, w1:2.30083459, loss:0.08875027
799, w0:4.03089054, w1:2.30058865, loss:0.08873893
800, w0:4.03112011, w1:2.30034344, loss:0.08872767
801, w0:4.03134899, w1:2.30009898, loss:0.08871647
802, w0:4.03157719, w1:2.29985525, loss:0.08870534
803, w0:4.03180470, w1:2.29961225, loss:0.08869428
804, w0:4.03203152, w1:2.29936998, loss:0.08868328
805, w0:4.03225767, w1:2.29912844, loss:0.08867235
806, w0:4.03248313, w1:2.29888763, loss:0.08866148
807, w0:4.03270792, w1:2.29864754, loss:0.08865068
808, w0:4.03293203, w1:2.29840817, loss:0.08863994
809, w0:4.03315547, w1:2.29816952, loss:0.08862927
810, w0:4.03337824, w1:2.29793158, loss:0.08861866
811, w0:4.03360034, w1:2.29769436, loss:0.08860812
812, w0:4.03382177, w1:2.29745786, loss:0.08859764
813, w0:4.03404254, w1:2.29722206, loss:0.08858722
814, w0:4.03426264, w1:2.29698698, loss:0.08857686
815, w0:4.03448208, w1:2.29675260, loss:0.08856657
816, w0:4.03470086, w1:2.29651892, loss:0.08855634
817, w0:4.03491899, w1:2.29628595, loss:0.08854617
818, w0:4.03513645, w1:2.29605367, loss:0.08853606
819, w0:4.03535327, w1:2.29582209, loss:0.08852601
820, w0:4.03556943, w1:2.29559121, loss:0.08851602
821, w0:4.03578495, w1:2.29536103, loss:0.08850609
822, w0:4.03599982, w1:2.29513153, loss:0.08849623
823, w0:4.03621404, w1:2.29490273, loss:0.08848642
824, w0:4.03642762, w1:2.29467461, loss:0.08847667
825, w0:4.03664055, w1:2.29444718, loss:0.08846697
826, w0:4.03685285, w1:2.29422043, loss:0.08845734
827, w0:4.03706451, w1:2.29399436, loss:0.08844776
828, w0:4.03727553, w1:2.29376897, loss:0.08843824
829, w0:4.03748592, w1:2.29354426, loss:0.08842878
830, w0:4.03769568, w1:2.29332022, loss:0.08841938
831, w0:4.03790480, w1:2.29309686, loss:0.08841003
832, w0:4.03811330, w1:2.29287416, loss:0.08840074
833, w0:4.03832117, w1:2.29265214, loss:0.08839150
834, w0:4.03852842, w1:2.29243078, loss:0.08838232
835, w0:4.03873504, w1:2.29221009, loss:0.08837319
836, w0:4.03894105, w1:2.29199007, loss:0.08836412
837, w0:4.03914643, w1:2.29177070, loss:0.08835510
838, w0:4.03935120, w1:2.29155199, loss:0.08834614
839, w0:4.03955535, w1:2.29133394, loss:0.08833723
840, w0:4.03975889, w1:2.29111654, loss:0.08832838
841, w0:4.03996182, w1:2.29089980, loss:0.08831957
842, w0:4.04016414, w1:2.29068371, loss:0.08831082
843, w0:4.04036585, w1:2.29046827, loss:0.08830213
844, w0:4.04056695, w1:2.29025347, loss:0.08829348
845, w0:4.04076745, w1:2.29003932, loss:0.08828489
846, w0:4.04096735, w1:2.28982582, loss:0.08827635
847, w0:4.04116664, w1:2.28961295, loss:0.08826786
848, w0:4.04136534, w1:2.28940073, loss:0.08825942
849, w0:4.04156344, w1:2.28918914, loss:0.08825103
850, w0:4.04176095, w1:2.28897819, loss:0.08824269
851, w0:4.04195786, w1:2.28876787, loss:0.08823440
852, w0:4.04215418, w1:2.28855819, loss:0.08822616
853, w0:4.04234991, w1:2.28834913, loss:0.08821798
854, w0:4.04254505, w1:2.28814070, loss:0.08820984
855, w0:4.04273961, w1:2.28793290, loss:0.08820174
856, w0:4.04293358, w1:2.28772572, loss:0.08819370
857, w0:4.04312697, w1:2.28751917, loss:0.08818571
858, w0:4.04331978, w1:2.28731324, loss:0.08817776
859, w0:4.04351201, w1:2.28710792, loss:0.08816986
860, w0:4.04370366, w1:2.28690322, loss:0.08816201
861, w0:4.04389473, w1:2.28669914, loss:0.08815421
862, w0:4.04408524, w1:2.28649567, loss:0.08814645
863, w0:4.04427516, w1:2.28629281, loss:0.08813874
864, w0:4.04446452, w1:2.28609056, loss:0.08813107
865, w0:4.04465331, w1:2.28588892, loss:0.08812346
866, w0:4.04484153, w1:2.28568788, loss:0.08811588
867, w0:4.04502919, w1:2.28548745, loss:0.08810835
868, w0:4.04521628, w1:2.28528762, loss:0.08810087
869, w0:4.04540281, w1:2.28508839, loss:0.08809344
870, w0:4.04558878, w1:2.28488976, loss:0.08808604
871, w0:4.04577420, w1:2.28469173, loss:0.08807869
872, w0:4.04595905, w1:2.28449429, loss:0.08807139
873, w0:4.04614335, w1:2.28429744, loss:0.08806413
874, w0:4.04632709, w1:2.28410119, loss:0.08805691
875, w0:4.04651029, w1:2.28390552, loss:0.08804974
876, w0:4.04669293, w1:2.28371045, loss:0.08804261
877, w0:4.04687502, w1:2.28351596, loss:0.08803552
878, w0:4.04705657, w1:2.28332205, loss:0.08802847
879, w0:4.04723757, w1:2.28312873, loss:0.08802147
880, w0:4.04741803, w1:2.28293598, loss:0.08801451
881, w0:4.04759794, w1:2.28274382, loss:0.08800759
882, w0:4.04777732, w1:2.28255223, loss:0.08800071
883, w0:4.04795615, w1:2.28236122, loss:0.08799388
884, w0:4.04813445, w1:2.28217079, loss:0.08798708
885, w0:4.04831222, w1:2.28198092, loss:0.08798033
886, w0:4.04848944, w1:2.28179163, loss:0.08797361
887, w0:4.04866614, w1:2.28160290, loss:0.08796694
888, w0:4.04884231, w1:2.28141474, loss:0.08796031
889, w0:4.04901794, w1:2.28122715, loss:0.08795371
890, w0:4.04919305, w1:2.28104012, loss:0.08794716
891, w0:4.04936763, w1:2.28085365, loss:0.08794064
892, w0:4.04954169, w1:2.28066775, loss:0.08793417
893, w0:4.04971523, w1:2.28048240, loss:0.08792773
894, w0:4.04988824, w1:2.28029760, loss:0.08792133
895, w0:4.05006073, w1:2.28011337, loss:0.08791497
896, w0:4.05023271, w1:2.27992969, loss:0.08790865
897, w0:4.05040417, w1:2.27974655, loss:0.08790236
898, w0:4.05057511, w1:2.27956397, loss:0.08789612
899, w0:4.05074554, w1:2.27938194, loss:0.08788991
900, w0:4.05091546, w1:2.27920046, loss:0.08788374
901, w0:4.05108486, w1:2.27901951, loss:0.08787760
902, w0:4.05125376, w1:2.27883912, loss:0.08787150
903, w0:4.05142215, w1:2.27865926, loss:0.08786544
904, w0:4.05159004, w1:2.27847995, loss:0.08785942
905, w0:4.05175742, w1:2.27830117, loss:0.08785343
906, w0:4.05192429, w1:2.27812294, loss:0.08784748
907, w0:4.05209067, w1:2.27794523, loss:0.08784156
908, w0:4.05225655, w1:2.27776806, loss:0.08783568
909, w0:4.05242193, w1:2.27759143, loss:0.08782983
910, w0:4.05258681, w1:2.27741532, loss:0.08782402
911, w0:4.05275119, w1:2.27723975, loss:0.08781825
912, w0:4.05291508, w1:2.27706470, loss:0.08781250
913, w0:4.05307848, w1:2.27689017, loss:0.08780680
914, w0:4.05324139, w1:2.27671617, loss:0.08780112
915, w0:4.05340381, w1:2.27654270, loss:0.08779548
916, w0:4.05356574, w1:2.27636974, loss:0.08778988
917, w0:4.05372718, w1:2.27619731, loss:0.08778431
918, w0:4.05388814, w1:2.27602539, loss:0.08777877
919, w0:4.05404862, w1:2.27585399, loss:0.08777327
920, w0:4.05420861, w1:2.27568310, loss:0.08776779
921, w0:4.05436813, w1:2.27551273, loss:0.08776235
922, w0:4.05452716, w1:2.27534287, loss:0.08775695
923, w0:4.05468571, w1:2.27517352, loss:0.08775157
924, w0:4.05484379, w1:2.27500468, loss:0.08774623
925, w0:4.05500140, w1:2.27483635, loss:0.08774092
926, w0:4.05515853, w1:2.27466852, loss:0.08773565
927, w0:4.05531519, w1:2.27450120, loss:0.08773040
928, w0:4.05547138, w1:2.27433437, loss:0.08772519
929, w0:4.05562709, w1:2.27416805, loss:0.08772000
930, w0:4.05578235, w1:2.27400223, loss:0.08771485
931, w0:4.05593713, w1:2.27383691, loss:0.08770973
932, w0:4.05609145, w1:2.27367209, loss:0.08770464
933, w0:4.05624531, w1:2.27350776, loss:0.08769958
934, w0:4.05639870, w1:2.27334392, loss:0.08769455
935, w0:4.05655163, w1:2.27318058, loss:0.08768955
936, w0:4.05670410, w1:2.27301772, loss:0.08768458
937, w0:4.05685612, w1:2.27285536, loss:0.08767964
938, w0:4.05700768, w1:2.27269348, loss:0.08767473
939, w0:4.05715878, w1:2.27253209, loss:0.08766985
940, w0:4.05730943, w1:2.27237119, loss:0.08766500
941, w0:4.05745963, w1:2.27221077, loss:0.08766018
942, w0:4.05760937, w1:2.27205083, loss:0.08765538
943, w0:4.05775867, w1:2.27189137, loss:0.08765062
944, w0:4.05790751, w1:2.27173239, loss:0.08764588
945, w0:4.05805591, w1:2.27157389, loss:0.08764117
946, w0:4.05820386, w1:2.27141586, loss:0.08763650
947, w0:4.05835137, w1:2.27125831, loss:0.08763184
948, w0:4.05849844, w1:2.27110123, loss:0.08762722
949, w0:4.05864506, w1:2.27094463, loss:0.08762263
950, w0:4.05879125, w1:2.27078849, loss:0.08761806
951, w0:4.05893699, w1:2.27063283, loss:0.08761352
952, w0:4.05908230, w1:2.27047763, loss:0.08760900
953, w0:4.05922717, w1:2.27032289, loss:0.08760452
954, w0:4.05937160, w1:2.27016863, loss:0.08760006
955, w0:4.05951560, w1:2.27001482, loss:0.08759563
956, w0:4.05965917, w1:2.26986148, loss:0.08759122
957, w0:4.05980230, w1:2.26970860, loss:0.08758684
958, w0:4.05994501, w1:2.26955618, loss:0.08758249
959, w0:4.06008729, w1:2.26940422, loss:0.08757816
960, w0:4.06022914, w1:2.26925271, loss:0.08757386
961, w0:4.06037056, w1:2.26910166, loss:0.08756958
962, w0:4.06051156, w1:2.26895106, loss:0.08756533
963, w0:4.06065214, w1:2.26880091, loss:0.08756111
964, w0:4.06079229, w1:2.26865122, loss:0.08755691
965, w0:4.06093202, w1:2.26850197, loss:0.08755274
966, w0:4.06107133, w1:2.26835318, loss:0.08754859
967, w0:4.06121023, w1:2.26820483, loss:0.08754447
968, w0:4.06134870, w1:2.26805693, loss:0.08754037
969, w0:4.06148676, w1:2.26790947, loss:0.08753629
970, w0:4.06162441, w1:2.26776245, loss:0.08753224
971, w0:4.06176164, w1:2.26761588, loss:0.08752822
972, w0:4.06189846, w1:2.26746974, loss:0.08752422
973, w0:4.06203487, w1:2.26732405, loss:0.08752024
974, w0:4.06217087, w1:2.26717879, loss:0.08751628
975, w0:4.06230646, w1:2.26703397, loss:0.08751235
976, w0:4.06244164, w1:2.26688958, loss:0.08750845
977, w0:4.06257642, w1:2.26674563, loss:0.08750457
978, w0:4.06271079, w1:2.26660211, loss:0.08750071
979, w0:4.06284475, w1:2.26645903, loss:0.08749687
980, w0:4.06297832, w1:2.26631637, loss:0.08749306
981, w0:4.06311148, w1:2.26617414, loss:0.08748927
982, w0:4.06324425, w1:2.26603234, loss:0.08748550
983, w0:4.06337661, w1:2.26589096, loss:0.08748175
984, w0:4.06350858, w1:2.26575001, loss:0.08747803
985, w0:4.06364015, w1:2.26560948, loss:0.08747433
986, w0:4.06377133, w1:2.26546937, loss:0.08747065
987, w0:4.06390211, w1:2.26532969, loss:0.08746700
988, w0:4.06403250, w1:2.26519042, loss:0.08746336
989, w0:4.06416249, w1:2.26505158, loss:0.08745975
990, w0:4.06429210, w1:2.26491315, loss:0.08745616
991, w0:4.06442131, w1:2.26477514, loss:0.08745259
992, w0:4.06455014, w1:2.26463754, loss:0.08744904
993, w0:4.06467858, w1:2.26450035, loss:0.08744552
994, w0:4.06480664, w1:2.26436358, loss:0.08744201
995, w0:4.06493431, w1:2.26422722, loss:0.08743853
996, w0:4.06506160, w1:2.26409126, loss:0.08743506
997, w0:4.06518850, w1:2.26395572, loss:0.08743162
998, w0:4.06531502, w1:2.26382058, loss:0.08742820
999, w0:4.06544117, w1:2.26368585, loss:0.08742480
1000, w0:4.06556693, w1:2.26355153, loss:0.08742142
# 可视化
# 通过求得的w0与w1,得到拟合直线
pred_y = w0 + w1 * x
data['pred_y'] = pred_y
ax = data.plot(x='x', y='pred_y', color='orangered')
data.plot.scatter(x='x', y='y', s=80, ax=ax)
<matplotlib.axes._subplots.AxesSubplot at 0x172ba5154a8>
绘制图像,观察w0、w1、loss的变化过程
plt.subplot(3,1,1)
plt.grid(linestyle=':')
plt.ylabel('w0')
plt.plot(epoches, w0s, color='dodgerblue', label='w0')
plt.subplot(3,1,2)
plt.grid(linestyle=':')
plt.ylabel('w1')
plt.plot(epoches, w1s, color='dodgerblue', label='w1')
plt.subplot(3,1,3)
plt.grid(linestyle=':')
plt.ylabel('loss')
plt.plot(epoches, losses, color='orangered', label='loss')
plt.tight_layout()
以等高线的方式绘制梯度下降的过程
import mpl_toolkits.mplot3d as axes3d
grid_w0, grid_w1 = np.meshgrid(
np.linspace(0, 9, 500),
np.linspace(0, 3.5, 500))
grid_loss = np.zeros_like(grid_w0)
for xs, ys in zip(x, y):
grid_loss += ((grid_w0 + xs*grid_w1 - ys) ** 2) / 2
plt.figure('Batch Gradient Descent', facecolor='lightgray')
plt.title('Batch Gradient Descent', fontsize=20)
plt.xlabel('w0', fontsize=14)
plt.ylabel('w1', fontsize=14)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.contourf(grid_w0, grid_w1, grid_loss, 10, cmap='jet')
cntr = plt.contour(grid_w0, grid_w1, grid_loss, 10,
colors='black', linewidths=0.5)
plt.clabel(cntr, inline_spacing=0.1, fmt='%.2f',
fontsize=8)
plt.plot(w0s, w1s, 'o-', c='orangered', label='BGD')
plt.legend()
plt.show()
薪水预测
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
data = pd.read_csv('../data/Salary_Data.csv')
data.plot.scatter(x='YearsExperience', y='Salary')
<matplotlib.axes._subplots.AxesSubplot at 0x24303391d30>
# 训练线性回归模型
import sklearn.linear_model as lm
model = lm.LinearRegression()
x, y = data.loc[:, :'YearsExperience'], data['Salary']
model.fit(x, y)
# 通过训练好的模型,绘制回归线
pred_y = model.predict(x) # 计算30个样本的预测输出
data['pred_y'] = pred_y
ax = data.plot.scatter(x='YearsExperience', y='Salary')
data.plot(x='YearsExperience', y='pred_y', color='orangered', ax=ax)
<matplotlib.axes._subplots.AxesSubplot at 0x243076caf60>
# 计算15年工作经验、18年工作经验的薪水预测结果
# test_x = [15, 18]
test_x = [[15], [18]]
model.predict(test_x)
array([167541.63502049, 195891.52198486])
评估误差
把训练集中的30个样本当做测试样本,输出预测结果并评估误差
import sklearn.metrics as sm
print(sm.mean_absolute_error(y, pred_y))
# print(sm.mean_squared_error(y, pred_y))
print(sm.median_absolute_error(y, pred_y))
4644.2012894435375
4017.9270292179935
可以根据误差的大小来判断当前模型是否达到业务标准,如果达到要求,则可以筹备上线。 如果没有达到,找原因,优化模型、样本。
sm.r2_score(y, pred_y)
0.9569566641435086
把训练好的模型存入文件
import pickle
with open('salary_model.pkl', 'wb') as f:
pickle.dump(model, f)
print('dump success!')
dump success!
加载模型
import numpy as np
import pickle
import sklearn.linear_model as lm
# 加载模型
with open('salary_model.pkl', 'rb') as f:
model = pickle.load(f)
model.predict([[15.5]])
array([172266.61618122])
封装预测模型对象,提供薪资预测服务
class SalaryPredictionModel():
def __init__(self):
with open('salary_model.pkl', 'rb') as f:
self.model = pickle.load(f)
def predict(self, exps):
"""
预测薪水
exps:接收一个array(存储每个人的工作年限)
"""
exps = np.array(exps).reshape(-1, 1)
return self.model.predict(exps)
# 使用封装好的对象,实现预测业务
model = SalaryPredictionModel()
model.predict([5, 6, 7, 8, 9, 10, 14, 13.5, 5.3, 1.2])
array([ 73042.01180594, 82491.9741274 , 91941.93644885, 101391.89877031,
110841.86109176, 120291.82341322, 158091.67269904, 153366.69153831,
75877.00050238, 37132.15498441])
岭回归
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
data = pd.read_csv('../data/Salary_Data2.csv')
data.head(3)
YearsExperience | Salary | |
---|---|---|
0 | 1.1 | 39343 |
1 | 1.3 | 46205 |
2 | 1.5 | 37731 |
# 训练普通的线性回归模型,观察
import sklearn.linear_model as lm
x, y = data.loc[:, :'YearsExperience'], data['Salary']
model = lm.LinearRegression()
model.fit(x, y)
pred_y = model.predict(x)
plt.grid(linestyle=':')
plt.scatter(data['YearsExperience'], data['Salary'], s=60, label='points')
plt.plot(data['YearsExperience'], pred_y, color='orangered', label='regression')
plt.legend()
<matplotlib.legend.Legend at 0x1d666f9e780>
# 训练一个岭回归模型,这样可以更好的拟合这些普通样本
model = lm.Ridge(100)
model.fit(x, y)
pred_y = model.predict(x)
plt.grid(linestyle=':')
plt.scatter(data['YearsExperience'], data['Salary'], s=60, label='points')
plt.plot(data['YearsExperience'], pred_y, color='orangered', label='regression')
plt.legend()
<matplotlib.legend.Legend at 0x1d66760d9e8>
如何选择合适的超参数C?
import sklearn.metrics as sm
# 找一组测试数据,针对不同的C训练不同的模型,比较每个模型r2得分即可。
test_data = data.iloc[0:-3:3]
test_x, test_y = test_data.loc[:, :'YearsExperience'], test_data['Salary']
pred_test_y = model.predict(test_x)
sm.r2_score(test_y, pred_test_y)
0.9196733030163875
多项式回归
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
data = pd.read_csv('../data/Salary_Data.csv')
data.head(3)
YearsExperience | Salary | |
---|---|---|
0 | 1.1 | 39343 |
1 | 1.3 | 46205 |
2 | 1.5 | 37731 |
# 训练普通的线性回归模型,观察
import sklearn.linear_model as lm
x, y = data.loc[:, :'YearsExperience'], data['Salary']
model = lm.LinearRegression()
model.fit(x, y)
pred_y = model.predict(x)
plt.grid(linestyle=':')
plt.scatter(data['YearsExperience'], data['Salary'], s=60, label='points')
plt.plot(data['YearsExperience'], pred_y, color='orangered', label='regression')
plt.legend()
<matplotlib.legend.Legend at 0x26d7642dcf8>
基于这组数据训练多项式回归模型
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
# 通过数据管线,链接两个操作,特征扩展->回归模型
model = pl.make_pipeline(
sp.PolynomialFeatures(10), lm.LinearRegression())
model.fit(x, y)
# 输出模型的r2得分
pred_y = model.predict(x)
print(sm.r2_score(y, pred_y))
# 从x的最小值到最大值拆出200个x值,预测得到200个y值,绘制模型曲线。
test_x = np.linspace(x.min(), x.max(), 200)
pred_test_y = model.predict(test_x.reshape(-1, 1))
# 可视化
plt.grid(linestyle=':')
plt.scatter(data['YearsExperience'], data['Salary'], s=60, label='points')
plt.plot(test_x, pred_test_y, color='orangered', label='poly regression')
plt.legend()
0.980983738515142
<matplotlib.legend.Legend at 0x26d7bfee668>
案例:波士顿房屋价格数据分析与房价预测
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as sd
import sklearn.utils as su
import pandas as pd
# 加载数据集
boston = sd.load_boston()
# print(boston.DESCR)
x, y, header = boston.data, boston.target, boston.feature_names
# 针对当前数据集,做简单的数据分析
data = pd.DataFrame(x, columns=header)
data['y'] = y
data.describe()
CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | B | LSTAT | y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 | 506.000000 |
mean | 3.593761 | 11.363636 | 11.136779 | 0.069170 | 0.554695 | 6.284634 | 68.574901 | 3.795043 | 9.549407 | 408.237154 | 18.455534 | 356.674032 | 12.653063 | 22.532806 |
std | 8.596783 | 23.322453 | 6.860353 | 0.253994 | 0.115878 | 0.702617 | 28.148861 | 2.105710 | 8.707259 | 168.537116 | 2.164946 | 91.294864 | 7.141062 | 9.197104 |
min | 0.006320 | 0.000000 | 0.460000 | 0.000000 | 0.385000 | 3.561000 | 2.900000 | 1.129600 | 1.000000 | 187.000000 | 12.600000 | 0.320000 | 1.730000 | 5.000000 |
25% | 0.082045 | 0.000000 | 5.190000 | 0.000000 | 0.449000 | 5.885500 | 45.025000 | 2.100175 | 4.000000 | 279.000000 | 17.400000 | 375.377500 | 6.950000 | 17.025000 |
50% | 0.256510 | 0.000000 | 9.690000 | 0.000000 | 0.538000 | 6.208500 | 77.500000 | 3.207450 | 5.000000 | 330.000000 | 19.050000 | 391.440000 | 11.360000 | 21.200000 |
75% | 3.647423 | 12.500000 | 18.100000 | 0.000000 | 0.624000 | 6.623500 | 94.075000 | 5.188425 | 24.000000 | 666.000000 | 20.200000 | 396.225000 | 16.955000 | 25.000000 |
max | 88.976200 | 100.000000 | 27.740000 | 1.000000 | 0.871000 | 8.780000 | 100.000000 | 12.126500 | 24.000000 | 711.000000 | 22.000000 | 396.900000 | 37.970000 | 50.000000 |
data.pivot_table(index='CHAS', values='y')
y | |
---|---|
CHAS | |
0.0 | 22.093843 |
1.0 | 28.440000 |
data['DIS'].plot.box()
<matplotlib.axes._subplots.AxesSubplot at 0x1dba88c7ef0>
# 判断每个字段与房价之间的关系
data.plot.scatter(x='RM', y='y')
<matplotlib.axes._subplots.AxesSubplot at 0x1dbabbafc88>
训练回归模型,预测房屋价格
- 整理数据集(输入集、输出集)
- 打乱数据集,拆分测试集、训练集。
- 选择模型,使用训练集训练模型,用测试集测试。
# 整理数据集(输入集、输出集)
x, y = data.iloc[:, :-1], data['y']
# 打乱数据集。 su: sklearn.utils
# random_state:随机种子。 若两次随机操作使用的随机种子相同,则随机结果也相同。
x, y = su.shuffle(x, y, random_state=7)
# 拆分测试集、训练集。
train_size = int(len(x) * 0.9)
train_x, test_x, train_y, test_y = \
x[:train_size], x[train_size:], y[:train_size], y[train_size:]
train_x.shape, test_x.shape, train_y.shape, test_y.shape
((455, 13), (51, 13), (455,), (51,))
# 选择线性模型,使用训练集训练模型,用测试集测试。
import sklearn.linear_model as lm
import sklearn.metrics as sm
model = lm.LinearRegression()
model.fit(train_x, train_y) # 针对训练集数据进行训练
pred_test_y = model.predict(test_x) # 针对测试集数据进行测试
print(sm.r2_score(test_y, pred_test_y))
print(sm.mean_absolute_error(test_y, pred_test_y))
0.8188356183218533
2.405641089772746
# 选择岭回归模型,使用训练集训练模型,用测试集测试
model = lm.Ridge(3)
model.fit(train_x,train_y)# 针对训练集数据进行训练
pred_test_y = model.predict(test_x)# 针对测试集数据进行测试
print(sm.r2_score(test_y,pred_test_y))
print(sm.mean_absolute_error(test_y,pred_test_y))
0.8106201351332835
2.512282622308928
# 选择多项式回归模型,使用训练集训练模型,用测试集测试
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
model = pl.make_pipeline(sp.PolynomialFeatures(2),lm.Ridge(50))
model.fit(train_x,train_y)# 针对训练集数据进行训练
pred_test_y = model.predict(test_x) # 针对测试集数据进行测试
print(sm.r2_score(test_y,pred_test_y))
print(sm.mean_absolute_error(test_y,pred_test_y))
0.8936132765852787
2.008395111436512
机器学习02-(损失函数loss、梯度下降、线性回归、评估训练、模型加载、岭回归、多项式回归)的更多相关文章
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 掌握Spark机器学习库-07-随机梯度下降
1)何为随机梯度下降 优化方法 迭代更新,来寻找函数全局最优解的方法 与最小二乘法相比:适用于变量众多,模型更复杂 2)梯度 变化最快,“陡峭” 通过函数表达式来衡量梯度 3)随机梯度下降原理推导过程 ...
- 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...
- 机器学习:模型泛化(岭回归:Ridge Regression)
一.基础理解 模型正则化(Regularization) # 有多种操作方差,岭回归只是其中一种方式: 功能:通过限制超参数大小,解决过拟合或者模型含有的巨大的方差误差的问题: 影响拟合曲线的两个因子 ...
- Machine Learning--week2 多元线性回归、梯度下降改进、特征缩放、均值归一化、多项式回归、正规方程与设计矩阵
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \the ...
- Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成
不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作
- 机器学习 损失函数(Loss/Error Function)、代价函数(Cost Function)和目标函数(Objective function)
损失函数(Loss/Error Function): 计算单个训练集的误差,例如:欧氏距离,交叉熵,对比损失,合页损失 代价函数(Cost Function): 计算整个训练集所有损失之和的平均值 至 ...
- 梯度下降(HGL)
线性回归:是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法. 对于一般训练集: 参数系统为: 线性模型为: 损 ...
- NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...
- 深度学习必备:随机梯度下降(SGD)优化算法及可视化
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...
随机推荐
- C#中Socket连接请求的超时设置
C#中Socket连接请求的超时设置 <转载> C#中, 对于Socket的请求,无论是同步还是异步,都没有提供超时机制,SendTimeout,ReceiveTimeout均无用.. 对 ...
- keshe第三周
本周尝试在openeuler中运行java代码 实现bc库和crypto.gmsm 如下: 实现gmlib C语言库
- nvm的下载安装
nvm下载地址:https://github.com/coreybutler/nvm-windows/releases 下载包,双击安装,选取路径, 注意:如果按默认的,安装在c盘的话,那之后的切换版 ...
- Command Injection-命令注入(命令执行)
什么是命令注入? 命令注入是滥用应用程序的行为在操作系统上执行命令,使用与设备上的应用程序运行时相同的权限.例如,在作为名为joe的用户运行的web服务器上实现命令注入将在该joe用户下执行命令,从而 ...
- Android笔记--Android+数据库的增加数据的实现
具体实现 添加成功: 界面代码很简单,直接忽略. 连接数据库的代码: Connect.java package com.example.myapplication.database; import a ...
- 组合构造和对应的OGF/EGF Dictionary 备查
目录 Constructions Cycle Multiset construction Powerset construction Admissible unlabelled constructio ...
- Java面试——架构设计与分布式
更多内容,移步 IT-BLOG 一.用 Java 自己实现一个 LRU LRU(Least Recently Used:最近最少使用):简单的说,就是保证基本的 Cache容量,如果超过容量则必须丢掉 ...
- MyBatis 重点知识归纳
一.MyBatis 简介 [1]MyBatis 是支持定制化 SQL,存储过程以及高级映射的优秀持久化框架.[2]MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取查询结果集.[3 ...
- 记一次 .NET 某医疗住院系统 崩溃分析
一:背景 1. 讲故事 最近收到了两起程序崩溃的dump,查了下都是经典的 double free 造成的,蛮有意思,这里就抽一篇出来分享一下经验供后面的学习者避坑吧. 二:WinDbg 分析 1. ...
- 德国坦克傲龙7.1PCIe | 魔音师 声源PCIe MaX 声卡驱动皮肤
适用于德国坦克傲龙7.1PCIe和魔音师 声源PCIe MaX 声卡驱动皮肤的皮肤. 皮肤使用方法:退出声卡驱动程序(托盘图标右键退出),之后删除声卡驱动目录里面的TERRATECAudioCente ...