[机器学习] PCA (主成分分析)详解
转载于https://my.oschina.net/gujianhan/blog/225241
一、简介
PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?对于学习图像处理的人来说,都知道PCA是降维的,但是,很多人不知道具体的原理,为此,我写这篇文章,来详细阐述一下PCA及其具体计算过程:
二、PCA详解
1、原始数据:
为了方便,我们假定数据是二维的,借助网络上的一组数据,如下:
x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T
y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T
2、计算协方差矩阵
什么是协方差矩阵?相信看这篇文章的人都学过数理统计,一些基本的常识都知道,但是,也许你很长时间不看了,都忘差不多了,为了方便大家更好的理解,这里先简单的回顾一下数理统计的相关知识,当然如果你知道协方差矩阵的求法你可以跳过这里。
(1)协方差矩阵:
首先我们给你一个含有n个样本的集合,依次给出数理统计中的一些相关概念:
均值:
标准差:
方差:
既然我们都有这么多描述数据之间关系的统计量,为什么我们还要用协方差呢?我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解这几科成绩之间的关系,这时,我们就要用协方差,协方差就是一种用来度量两个随机变量关系的统计量,其定义为:
从协方差的定义上我们也可以看出一些显而易见的性质,如:
(X的方差)
需要注意的是,协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:
这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为
可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。
(2)协方差矩阵的求法:
协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。下面我们将在matlab中用一个例子进行详细说明:
首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。
MySample = fix(rand(10,3)*50)
根据公式,计算协方差需要计算均值,那是按行计算均值还是按列呢,我一开始就老是困扰这个问题。前面我们也特别强调了,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。样本矩阵的每行是一个样本,每列为一个维度,所以我们要按列计算均值。为了描述方便,我们先将三个维度的数据分别赋值:
dim1 = MySample(:,1);
dim2 = MySample(:,2);
dim3 = MySample(:,3);
计算dim1与dim2,dim1与dim3,dim2与dim3的协方差:
sum( (dim1-mean(dim1)) .* (dim2-mean(dim2)) ) / ( size(MySample,1)-1 ) % 得到 74.5333
sum( (dim1-mean(dim1)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到 -10.0889
sum( (dim2-mean(dim2)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到 -10***000
搞清楚了这个后面就容易多了,协方差矩阵的对角线就是各个维度上的方差,下面我们依次计算:
std(dim1)^2 % 得到 108.3222
std(dim2)^2 % 得到 260.6222
std(dim3)^2 % 得到 94.1778
这样,我们就得到了计算协方差矩阵所需要的所有数据,调用Matlab自带的cov函数进行验证:
cov(MySample)
可以看到跟我们计算的结果是一样的,说明我们的计算是正确的。但是通常我们不用这种方法,而是用下面简化的方法进行计算:
先让样本矩阵中心化,即每一维度减去该维度的均值,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可。其实这种方法也是由前面的公式通道而来,只不过理解起来不是很直观而已。大家可以自己写个小的矩阵看一下就明白了。其Matlab代码实现如下:
X = MySample – repmat(mean(MySample),10,1); % 中心化样本矩阵
C = (X’*X)./(size(X,1)-1)
(为方便对matlab不太明白的人,小小说明一下各个函数,同样,对matlab有一定基础的人直接跳过:
B = repmat(A,m,n ) %%将矩阵 A 复制 m×n 块,即把 A 作为 B 的元素,B 由 m×n 个 A 平铺而成。B 的维数是 [size(A,1)*m, (size(A,2)*n]
B = mean(A)的说明:
如果你有这样一个矩阵:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];
用mean(A)(默认dim=1)就会求每一列的均值
ans =
3.0000 4.5000 6.0000
用mean(A,2)就会求每一行的均值
ans =
2.0000
4.0000
6.0000
6.0000
size(A,n)%% 如果在size函数的输入参数中再添加一项n,并用1或2为n赋值,则 size将返回矩阵的行数或列数。其中r=size(A,1)该语句返回的是矩阵A的行数, c=size(A,2) 该语句返回的是矩阵A的列数)
上面我们简单说了一下协方差矩阵及其求法,言归正传,我们用上面简化求法,求出样本的协方差矩阵为:
3、计算协方差矩阵的特征向量和特征值
因为协方差矩阵为方阵,我们可以计算它的特征向量和特征值,如下:
[eigenvectors,eigenvalues] = eig(cov)
我们可以看到这些矢量都是单位矢量,也就是它们的长度为1,这对PCA来说是很重要的。
4、选择成分组成模式矢量
求出协方差矩阵的特征值及特征向量之后,按照特征值由大到小进行排列,这将给出成分的重要性级别。现在,如果你喜欢,可以忽略那些重要性很小的成分,当然这会丢失一些信息,但是如果对应的特征值很小,你不会丢失很多信息。如果你已经忽略了一些成分,那么最后的数据集将有更少的维数,精确地说,如果你的原始数据是n维的,你选择了前p个主要成分,那么你现在的数据将仅有p维。现在我们要做的是组成一个模式矢量,这只是几个矢量组成的矩阵的一个有意思的名字而已,它由你保持的所有特征矢量构成,每一个特征矢量是这个矩阵的一列。
对于我们的数据集,因为有两个特征矢量,因此我们有两个选择。我们可以用两个特征矢量组成模式矢量:
我们也可以忽略其中较小特征值的一个特征矢量,从而得到如下模式矢量:
5、得到降维后的数据
其中rowFeatureVector是由模式矢量作为列组成的矩阵的转置,因此它的行就是原来的模式矢量,而且对应最大特征值的特征矢量在该矩阵的最上一行。rowdataAdjust是每一维数据减去样本均值后,所组成矩阵的转置,即数据项目在每一列中,每一行是一维,对我们的样本来说即是,第一行为x维上数据,第二行为y维上的数据。FinalData是最后得到的数据,数据项目在它的列中,维数沿着行。
结果为:
0.8280 0.1751
-1.7776 -0.1429
0.9922 -0.3844
0.2742 -0.1304
1.6758 0.2095
0.9129 -0.1753
-0.0991 0.3498
-1.1446 -0.0464
-0.4380 -0.0178
-1.2238 0.1627
这将给我们什么结果呢?这将仅仅给出我们选择的数据。我们的原始数据有两个轴(x和y),所以我们的原始数据按这两个轴分布。我们可以按任何两个我们喜欢的轴表示我们的数据。如果这些轴是正交的,这种表达将是最有效的,这就是特征矢量总是正交的重要性。我们已经将我们的数据从原来的xy轴表达变换为现在的单个特征矢量表达。
(说明:如果要恢复原始数据,只需逆过程计算即可,即:
)
到此为止,相信你已经掌握了PCA及其原理了
[机器学习] PCA (主成分分析)详解的更多相关文章
- 图解机器学习 | LightGBM模型详解
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-det ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 机器学习03 /jieba详解
机器学习03 /jieba详解 目录 机器学习03 /jieba详解 1.引言 2.分词 2.1.jieba.cut && jieba.cut_for_search 2.2.jieba ...
- [机器学习] PCA主成分分析原理分析和Matlab实现方法
转载于http://blog.csdn.net/guyuealian/article/details/68487833 网上关于PCA(主成分分析)原理和分析的博客很多,本博客并不打算长篇大论推论PC ...
- 主成分分析(PCA)原理详解_转载
一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...
- PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量 ...
- 机器学习|线性回归算法详解 (Python 语言描述)
原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 ...
- 机器学习-KNN算法详解与实战
最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入 ...
- PCA (主成分分析)详解 (写给初学者) 结合matlab(转载)
一.简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题 ...
随机推荐
- JetBrains Fleet初体验,如何运行一个java项目
序言 各位好啊,我是会编程的蜗牛,JetBrains 日前宣布其打造的下一代 IDE Fleet 正式推出公共预览版,现已开放下载.作为java开发者,对于JetBrains开发的全家桶可以说是印象深 ...
- Java程序员必会Synchronized底层原理剖析
synchronized作为Java程序员最常用同步工具,很多人却对它的用法和实现原理一知半解,以至于还有不少人认为synchronized是重量级锁,性能较差,尽量少用. 但不可否认的是synchr ...
- 深入浅出TCP与IP协议笔记
TCP/IP 4层结构:应用层 传输层 网络层 链路层 探索过程问题:一个主机的数据要经过哪些过程才到达对方的主机上 一组电信号就是一个数据包,一个数据包称为一帧,制定这个规则的就是以太网协议 ...
- Vue中router路由的使用、router-link的使用(在项目中的实际运用方式)
文章目录 1.先看router中的index.js文件 2.router-link的使用 3.实现的效果 前提:router已经安装 1.先看router中的index.js文件 import Vue ...
- Eclipse插件RCP桌面应用开发的点点滴滴
Eclipse插件开发的点点滴滴 新公司做的是桌面应用程序, 与之前一直在做的web页面 ,相差甚大 . 这篇文章是写于2022年10月底,这时在新公司已经入职了快三月.写作目的是:国内对于eclip ...
- MongoDB - 简单了解
什么是 NoSQL NoSQL 是一种非关系型数据库管理系统,不需要固定的架构,可以避免 JOIN 连接,并且易于扩展. NoSQL 常用于具有庞大数据存储需求的分布式数据存储,通常是大数据和实时 W ...
- Sprint产品待办列表的优先级要怎么排?
在梳理产品待办事项列表的过程中,产品负责人需要先做优先级排列,保证我们 在一定的时间盒内能够交付需要优先级最高.最具价值的用户故事. 那这个用户故事的优先级要怎么排列,我们怎样选择用户故事的实现顺序? ...
- .NET 7.0 重磅发布及资源汇总
2022-11-8 .NET 7.0 作为微软的开源跨平台开发平台正式发布.微软在公告中表示.NET 7为您的应用程序带来了C# 11 / F# 7,.NET MAUI,ASP.NET Core/Bl ...
- 基于k8s的发布系统的实现
综述 首先,本篇文章所介绍的内容,已经有完整的实现,可以参考这里. 在微服务.DevOps和云平台流行的当下,使用一个高效的持续集成工具也是一个非常重要的事情.虽然市面上目前已经存在了比较成熟的自动化 ...
- 超精准!AI 结合邮件内容与附件的意图理解与分类!⛵
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...