聚类模型是试图检测未标记数据中模式的无监督方法。聚类算法主要有两类:聚集聚类将相似的数据点连接在一起,而质心聚类则试图在数据中找到中心或分区。Yellowbrick提供yellowbrick.cluster用于可视化和评估群集行为的模块。目前,我们提供了几种可视化工具来评估质心机制,特别是K均值聚类,帮助我们发现聚类度量中的最佳K参数。

代码下载

主要方法如下:

  • Elbow Method:根据某个评分函数对聚类进行可视化,在曲线中寻找“Elbow”。
  • Silhouette Visualize:在一个模型中可视化每个集群的轮廓分数。
  • Intercluster Distance:可视化簇的相对距离和大小。

本文如果数据集下载不下来,查看下面地址,然后放入yellowbrick安装目录\datasets\fixtures文件夹:

{
"bikeshare": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/bikeshare.zip",
"signature": "4ed07a929ccbe0171309129e6adda1c4390190385dd6001ba9eecc795a21eef2"
},
"hobbies": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/hobbies.zip",
"signature": "6114e32f46baddf049a18fb05bad3efa98f4e6a0fe87066c94071541cb1e906f"
},
"concrete": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/concrete.zip",
"signature": "5807af2f04e14e407f61e66a4f3daf910361a99bb5052809096b47d3cccdfc0a"
},
"credit": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/credit.zip",
"signature": "2c6f5821c4039d70e901cc079d1404f6f49c3d6815871231c40348a69ae26573"
},
"energy": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/energy.zip",
"signature": "174eca3cd81e888fc416c006de77dbe5f89d643b20319902a0362e2f1972a34e"
},
"game": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/game.zip",
"signature": "ce799d1c55fcf1985a02def4d85672ac86c022f8f7afefbe42b20364fba47d7a"
},
"mushroom": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/mushroom.zip",
"signature": "f79fdbc33b012dabd06a8f3cb3007d244b6aab22d41358b9aeda74417c91f300"
},
"occupancy": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/occupancy.zip",
"signature": "0b390387584586a05f45c7da610fdaaf8922c5954834f323ae349137394e6253"
},
"spam": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/spam.zip",
"signature": "000309ac2b61090a3001de3e262a5f5319708bb42791c62d15a08a2f9f7cb30a"
},
"walking": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/walking.zip",
"signature": "7a36615978bc3bb74a2e9d5de216815621bd37f6a42c65d3fc28b242b4d6e040"
},
"nfl": {
"url": "https://s3.amazonaws.com/ddl-data-lake/yellowbrick/v1.0/nfl.zip",
"signature": "4989c66818ea18217ee0fe3a59932b963bd65869928c14075a5c50366cb81e1f"
}
}
# 多行输出
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

1 Elbow Method

KElbowVisualizer实现了“肘部”方法,以帮助数据科学家通过用K的一系列值拟合模型来选择最佳的簇数。如果折线图类似于手臂,则“肘部”(曲线上的拐点)是一个很好的指示,表明基础模型在该点最适合。在可视化工具中,“弯头”将用虚线注释。

可视化器 KElbowVisualizer
快速使用方法 kelbow_visualizer()
模型 聚类
工作流程 模型评估

为了证明这一点,在下面的例子中,KElbowVisualizer在一个包含8个随机点簇的二维数据集上拟合KMeans模型,该模型的K值范围从4到11。当模型适合8个簇时,我们可以看到一条线在图中注释“弯头”,在本例中我们知道这是最佳数目。

1.1 基础使用

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs from yellowbrick.cluster import KElbowVisualizer # Generate synthetic dataset with 8 random clusters
# 建立具有8个随机点簇中心的数据
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42) # Instantiate the clustering model and visualizer
model = KMeans()
# 可视化
visualizer = KElbowVisualizer(model, k=(4,12)) visualizer.fit(X) # Fit the data to the visualizer
visualizer.show(); # Finalize and render the figure
<Figure size 800x550 with 2 Axes>

默认情况下,评分参数度量metric设置为distortion,这将计算从每个点到其指定中心的平方距离之和。
但是,KElbowVisualizer还可以使用另外两个指标-sihouette和calinski_harabasz。
silhouette计算所有采样的平均轮廓系数,而calinski_harabasz分数计算簇之间和簇内的分散率。

KElbowVisualizer还将每K训练聚类模型的时间量显示为一条绿色虚线,但可以通过设置timings=False来隐藏。在下面的示例中,我们将使用calinski_harabasz分数并隐藏时间以适合模型。

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs from yellowbrick.cluster import KElbowVisualizer # Generate synthetic dataset with 8 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42) # Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(
model, k=(4,12), metric='calinski_harabasz', timings=False
) visualizer.fit(X) # Fit the data to the visualizer
visualizer.show(); # Finalize and render the figure

默认情况下,参数locate_elbow设置为True,使用“elbow检测算法”自动找到可能与k的最佳值相对应的“肘”。但是,用户可以通过设置关闭功能locate_elbow=False。您可以在 Kevin Arvai的Knee point detection in Python中阅读有关此算法的实现的信息。

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs from yellowbrick.cluster import KElbowVisualizer # Generate synthetic dataset with 8 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=8, random_state=42) # Instantiate the clustering model and visualizer
model = KMeans()
visualizer = KElbowVisualizer(
model, k=(4,12), metric='calinski_harabasz', timings=False, locate_elbow=False
) visualizer.fit(X) # Fit the data to the visualizer
visualizer.show(); # Finalize and render the figure

重要的是要记住,如果数据不是非常聚集,那么“肘部”方法就不能很好地工作。在这种情况下,您可能会看到一条平滑的曲线,而K的最佳值将不清楚。

1.2 快速方法

上面的相同功能可以通过关联的快速方法来实现kelbow_visualizer。此方法将KElbowVisualizer使用关联的参数构建对象,将其拟合,然后(可选)立即显示可视化效果。

from sklearn.cluster import KMeans
from yellowbrick.cluster.elbow import kelbow_visualizer
from yellowbrick.datasets.loaders import load_nfl X, y = load_nfl() # Use the quick method and immediately show the figure
kelbow_visualizer(KMeans(random_state=4), X, k=(2,10));

2 Silhouette Visualiz

当数据集的实际情况未知时,使用轮廓系数来计算聚类密度。通过平均每个样本的轮廓系数来计算得分,计算为每个样本的平均簇内距离和平均最近聚类距离之间的差,用最大值归一化。这将产生一个介于1和-1之间的分数,其中1是高度密集的簇,而-1是完全不正确的聚类。

可视化器 SilhouetteVisualizer
快速使用方法 silhouette_visualizer()
模型 聚类
工作流程 模型评估

2.1 基础使用

红线表示平均Silhouette分数,纵坐标表示当前特征的分数

from sklearn.cluster import KMeans

from yellowbrick.cluster import SilhouetteVisualizer
from yellowbrick.datasets import load_nfl # Load a clustering dataset
X, y = load_nfl() # Specify the features to use for clustering
# 指定某五个特征
features = ['Rec', 'Yds', 'TD', 'Fmb', 'Ctch_Rate']
# 挑选这些特征重tgb>20的数据
X = X.query('Tgt >= 20')[features] # Instantiate the clustering model and visualizer
model = KMeans(5, random_state=42)
visualizer = SilhouetteVisualizer(model, colors='yellowbrick') visualizer.fit(X) # Fit the data to the visualizer
visualizer.show(); # Finalize and render the figure

2.2 快速方法

上面的相同功能可以通过关联的快速方法silhouette_visualizer来实现。此方法将使用关联的参数构建Silhouette Visualizer对象,将其拟合,然后(可选)立即显示它。

from sklearn.cluster import KMeans

from yellowbrick.cluster import silhouette_visualizer
from yellowbrick.datasets import load_credit # Load a clustering dataset
X, y = load_credit() # Specify rows to cluster: under 40 y/o and have either graduate or university education
X = X[(X['age'] <= 40) & (X['edu'].isin([1,2]))] # Use the quick method and immediately show the figure
silhouette_visualizer(KMeans(5, random_state=42), X, colors='yellowbrick');

3 Intercluster Distance

簇间距离图在保留到其他中心的距离的情况下,在2维中显示簇中心的嵌入。
例如,可视化中元素离中心越近,它们在原始特征空间中的距离就越近。
根据评分度量调整群集的大小。
默认情况下,它们的大小取决于membership,例如,属于每个中心的实例数量。
这让人感觉到集群的相对重要性。
但是,请注意,由于两个簇在2D空间中重叠,这并不意味着它们在原始特征空间中重叠。

可视化器 InterclusterDistance
快速使用方法 intercluster_distance()
模型 聚类
工作流程 模型评估

3.1 基础使用


from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs from yellowbrick.cluster import InterclusterDistance # Generate synthetic dataset with 12 random clusters
X, y = make_blobs(n_samples=1000, n_features=12, centers=12, random_state=42) # Instantiate the clustering model and visualizer
# 六个簇类
model = KMeans(6)
visualizer = InterclusterDistance(model) visualizer.fit(X) # Fit the data to the visualizer|
visualizer.show(); # Finalize and render the figure

3.2 快速方法

上面的相同功能可以通过关联的快速方法intercluster_distance实现。此方法将InterclusterDistance使用关联的参数构建对象,将其拟合,然后(可选)立即显示它。

from yellowbrick.datasets import load_nfl
from sklearn.cluster import MiniBatchKMeans
from yellowbrick.cluster import intercluster_distance X, _ = load_nfl()
intercluster_distance(MiniBatchKMeans(5, random_state=777), X);

4 参考

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html

https://www.scikit-yb.org/en/latest/api/cluster/silhouette.html

https://www.scikit-yb.org/en/latest/api/cluster/icdm.html#yellowbrick.cluster.icdm.InterclusterDistance

[机器学习] Yellowbrick使用笔记7-聚类可视化的更多相关文章

  1. [机器学习] Yellowbrick使用笔记4-目标可视化

    目标可视化工具专门用于直观地描述用于监督建模的因变量,通常称为y目标. 代码下载 当前实现了以下可视化: 平衡箱可视化Balanced Binning:生成带有垂直线的直方图,垂直线显示推荐值点,以将 ...

  2. [机器学习] Yellowbrick使用笔记6-分类可视化

    分类模型试图在一个离散的空间中预测一个目标,即为一个因变量实例分配一个或多个类别. 代码下载 分类分数可视化工具显示类之间的差异以及一些特定于分类器的可视化评估.我们目前已经实施了以下分类器评估: 分 ...

  3. [机器学习] Yellowbrick使用笔记5-回归可视化

    回归模型试图预测连续空间中的目标.回归计分可视化工具显示模型空间中的实例,以便更好地理解模型是如何进行预测的.代码下载 Yellowbrick已经实施了三种回归评估: 残差图Residuals Plo ...

  4. [机器学习] Yellowbrick使用笔记8-模型选择可视化

    Yellowbrick可视化工具旨在指导模型选择过程.一般来说,模型选择是一个搜索问题,定义如下:给定N个由数值属性描述的实例和(可选)一个估计目标,找到一个由特征.算法和最适合数据的超参数组成的三元 ...

  5. [机器学习] Yellowbrick使用笔记1-快速入门

    Yellowbrick是一个机器学习可视化库,主要依赖于sklearn机器学习库,能够提供多种机器学习算法的可视化,主要包括特征可视化,分类可视化,回归可视化,回归可视化,聚类可视化,模型选择可视化, ...

  6. [机器学习] Yellowbrick使用笔记3-特征分析可视化

    特征分析可视化工具设计用于在数据空间中可视化实例,以便检测可能影响下游拟合的特征或目标.因为ML操作高维数据集(通常至少35个),可视化工具将重点放在聚合.优化和其他技术上,以提供对数据的概述.这是Y ...

  7. [机器学习] Yellowbrick使用笔记2-模型选择

    在本教程中,我们将查看各种Scikit Learn模型的分数,并使用Yellowbrick的可视化诊断工具对它们进行比较,以便为我们的数据选择最佳的模型. 代码下载 文章目录 1 使用说明 1.1 模 ...

  8. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  9. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

随机推荐

  1. mongodb基础整理篇————副本概念篇[外篇]

    前言 副本集整理. 开始逐步把mongodb博客补齐了. 正文 什么是副本集 副本集是一组服务器,其中一个是用于处理写入操作的主节点,还有多个用于保存主节点的数据副本的从节点. 如果主节点崩溃了,则从 ...

  2. 2022-08-20-nas寄了就搞网络__网络升级计划_(估计又得白给)

    layout: post cid: 13 title: nas寄了就搞网络? 网络升级计划 (估计又得白给) slug: 13 date: 2022/08/20 16:31:00 updated: 2 ...

  3. CSAPP实验attacklab

    attacklab 实验报告和答案文件都在 https://github.com/thkkk/attacklab

  4. Vue学习之--------el与data的两种写法、MVVM模型、数据代理(2022/7/5)

    文章目录 1.el与data的两种写法 1.1.基础知识 1.2.代码实例 1.3.页面效果 2.MVVM模型 2.1. 基础知识 2.2 .代码实例 2.3.页面效果 3.数据代理 3.1. 基础知 ...

  5. 知识图谱顶会论文(IJCAI-2022) TEMP:多跳推理的类型感知嵌入

    IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 论文地址: Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graph ...

  6. Paxos分布式系统共识算法?我愿称其为点歌算法…

    原创:微信公众号 码农参上,欢迎分享,转载请保留出处. 哈喽大家好啊,我是Hydra. 分布式系统共识算法Paxos相信大家都不陌生,它被称为最难理解的算法不是没有道理的,首先,它的发表之路就充满了坎 ...

  7. 第一阶段:linux运维基础·2

    1. 找到当前目录下所有的.txt文件,且将查询结果写入到allfile.txt中 find . -type f -name '*.txt' > allfile.txt 2. 解读如下语句 -r ...

  8. C#中下载项目中的文件

    1.将需要下载的文档添加到项目的文件夹中 2.接口部分 public IActionResult DownLoad() { var filePath = Directory.GetCurrentDir ...

  9. dns隧道攻击原理及常用工具流量分析

    DNS协议是一种请求应答协议,也是一种可用于应用层的隧道技术.虽然DNS流量的异常变化可能会被发现,但是在基于传统socket隧道已经濒临淘汰,TCP.UDP通信大量被安全设备拦截的大背景下,DNS. ...

  10. C#接口设计

    基本架构 model 实体 说得通俗一些,model中主要是定义前端传过来的变量以及其类型,或者是需要操作的数据库中的某些字段值.举个例子: namespace Test.Models.Book { ...