Python实现k-近邻算法案例学习
一、介绍
你好,我是悦创。
博客首发:https://bornforthis.cn/column/Machine-learning/informal-essay/01.html
本文是由给私教学员 cava 讲解时编写,主要逻辑没有错误。
k-近邻算法(K-Nearest Neighbour algorithm),又称 KNN 算法,是数据挖掘技术中原理最简单的算法。
工作原理:给定一个已知标签类别的训练数据集,输入没有标签的新数据后,在训练数据集中找到与新数据最邻近的 k 个实例,如果这 k 个实例的多数属于某个类别,那么新数据就属于这个类别。简单理解为:由那些离 X 最近的 k 个点来投票决定 X 归为哪一类。
二、k-近邻算法的步骤
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的 k 个点;
(4)确定前k个点所在类别的出现频率;
(5)返回前 k 个点出现频率最高的类别作为当前点的预测类别。
三、Python 实现
判断一个电影是爱情片还是动作片。
电影名称 | 搞笑镜头 | 拥抱镜头 | 打斗镜头 | 电影类型 | |
---|---|---|---|---|---|
0 | 功夫熊猫 | 39 | 0 | 31 | 喜剧片 |
1 | 叶问3 | 3 | 2 | 65 | 动作片 |
2 | 伦敦陷落 | 2 | 3 | 55 | 动作片 |
3 | 代理情人 | 9 | 38 | 2 | 爱情片 |
4 | 新步步惊心 | 8 | 34 | 17 | 爱情片 |
5 | 谍影重重 | 5 | 2 | 57 | 动作片 |
6 | 功夫熊猫 | 39 | 0 | 31 | 喜剧片 |
7 | 美人鱼 | 21 | 17 | 5 | 喜剧片 |
8 | 宝贝当家 | 45 | 2 | 9 | 喜剧片 |
9 | 唐人街探案 | 23 | 3 | 17 | ? |
欧氏距离
构建数据集
rowdata = {
"电影名称": ['功夫熊猫', '叶问3', '伦敦陷落', '代理情人', '新步步惊心', '谍影重重', '功夫熊猫', '美人鱼', '宝贝当家'],
"搞笑镜头": [39,3,2,9,8,5,39,21,45],
"拥抱镜头": [0,2,3,38,34,2,0,17,2],
"打斗镜头": [31,65,55,2,17,57,31,5,9],
"电影类型": ["喜剧片", "动作片", "动作片", "爱情片", "爱情片", "动作片", "喜剧片", "喜剧片", "喜剧片"]
}
计算已知类别数据集中的点与当前点之间的距离
new_data = [24,67]
dist = list((((movie_data.iloc[:6,1:3]-new_data)**2).sum(1))**0.5)
将距离升序排列,然后选取距离最小的 k 个点「容易拟合·以后专栏再论」
k = 4
dist_l = pd.DataFrame({'dist': dist, 'labels': (movie_data.iloc[:6, 3])})
dr = dist_l.sort_values(by='dist')[:k]
确定前 k 个点的类别的出现概率
re = dr.loc[:,'labels'].value_counts()
re.index[0]
选择频率最高的类别作为当前点的预测类别
result = []
result.append(re.index[0])
result
四、约会网站配对效果判定
# 导入数据集
datingTest = pd.read_table('datingTestSet.txt',header=None)
datingTest.head()
# 分析数据
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
#把不同标签用颜色区分
Colors = []
for i in range(datingTest.shape[0]):
m = datingTest.iloc[i,-1] # 标签
if m=='didntLike':
Colors.append('black')
if m=='smallDoses':
Colors.append('orange')
if m=='largeDoses':
Colors.append('red')
#绘制两两特征之间的散点图
plt.rcParams['font.sans-serif']=['Simhei'] #图中字体设置为黑体
pl=plt.figure(figsize=(12,8)) # 建立一个画布
fig1=pl.add_subplot(221) # 建立两行两列画布,放在第一个里面
plt.scatter(datingTest.iloc[:,1],datingTest.iloc[:,2],marker='.',c=Colors)
plt.xlabel('玩游戏视频所占时间比')
plt.ylabel('每周消费冰淇淋公升数')
fig2=pl.add_subplot(222)
plt.scatter(datingTest.iloc[:,0],datingTest.iloc[:,1],marker='.',c=Colors)
plt.xlabel('每年飞行常客里程')
plt.ylabel('玩游戏视频所占时间比')
fig3=pl.add_subplot(223)
plt.scatter(datingTest.iloc[:,0],datingTest.iloc[:,2],marker='.',c=Colors)
plt.xlabel('每年飞行常客里程')
plt.ylabel('每周消费冰淇淋公升数')
plt.show()
# 数据归一化
def minmax(dataSet):
minDf = dataSet.min()
maxDf = dataSet.max()
normSet = (dataSet - minDf )/(maxDf - minDf)
return normSet
datingT = pd.concat([minmax(datingTest.iloc[:, :3]), datingTest.iloc[:,3]], axis=1)
datingT.head()
# 切分训练集和测试集
def randSplit(dataSet,rate=0.9):
n = dataSet.shape[0]
m = int(n*rate)
train = dataSet.iloc[:m,:]
test = dataSet.iloc[m:,:]
test.index = range(test.shape[0])
return train,test
train,test = randSplit(datingT)
# 分类器针对约会网站的测试代码
def datingClass(train,test,k):
n = train.shape[1] - 1 # 将标签列减掉
m = test.shape[0] # 行数
result = []
for i in range(m):
dist = list((((train.iloc[:, :n] - test.iloc[i, :n]) ** 2).sum(1))**5)
dist_l = pd.DataFrame({'dist': dist, 'labels': (train.iloc[:, n])})
dr = dist_l.sort_values(by = 'dist')[: k]
re = dr.loc[:, 'labels'].value_counts()
result.append(re.index[0])
result = pd.Series(result)
test['predict'] = result # 增加一列
acc = (test.iloc[:,-1]==test.iloc[:,-2]).mean()
print(f'模型预测准确率为{acc}')
return test
datingClass(train,test,5) # 95%
五、手写数字识别
import os
#得到标记好的训练集
def get_train():
path = 'digits/trainingDigits'
trainingFileList = os.listdir(path)
train = pd.DataFrame()
img = [] # 第一列原来的图像转换为图片里面0和1,一行
labels = [] # 第二列原来的标签
for i in range(len(trainingFileList)):
filename = trainingFileList[i]
txt = pd.read_csv(f'digits/trainingDigits/{filename}', header = None) #32行
num = ''
# 将32行转变为1行
for i in range(txt.shape[0]):
num += txt.iloc[i,:]
img.append(num[0])
filelable = filename.split('_')[0]
labels.append(filelable)
train['img'] = img
train['labels'] = labels
return train
train = get_train()
# 得到标记好的测试集
def get_test():
path = 'digits/testDigits'
testFileList = os.listdir(path)
test = pd.DataFrame()
img = [] # 第一列原来的图像转换为图片里面0和1,一行
labels = [] # 第二列原来的标签
for i in range(len(testFileList)):
filename = testFileList[i]
txt = pd.read_csv(f'digits/testDigits/{filename}', header = None) #32行
num = ''
# 将32行转变为1行
for i in range(txt.shape[0]):
num += txt.iloc[i,:]
img.append(num[0])
filelable = filename.split('_')[0]
labels.append(filelable)
test['img'] = img
test['labels'] = labels
return test
test = get_test()
# 分类器针对手写数字的测试代码
from Levenshtein import hamming
def handwritingClass(train, test, k):
n = train.shape[0]
m = test.shape[0]
result = []
for i in range(m):
dist = []
for j in range(n):
d = str(hamming(train.iloc[j,0], test.iloc[i,0]))
dist.append(d)
dist_l = pd.DataFrame({'dist':dist, 'labels':(train.iloc[:,1])})
dr = dist_l.sort_values(by='dist')[:k]
re = dr.loc[:,'labels'].value_counts()
result.append(re.index[0])
result = pd.Series(result)
test['predict'] = result
acc = (test.iloc[:,-1] == test.iloc[:,-2]).mean()
print(f'模型预测准确率为{acc}')
return test
handwritingClass(train, test, 3) # 97.8%
六、算法优缺点
优点
(1)简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
(2)可用于数值型数据和离散型数据;
(3)无数据输入假定;
(4)适合对稀有事件进行分类。
缺点
(1)计算复杂性高;空间复杂性高;
(2)计算量大,所以一般数值很大的适合不用这个,但是单个样本又不能太少,否则容易发生误分;
(3)样本不平衡问题(即有些类别的样本数量很多,而其他样本的数量很少);
(4)可理解性比较差,无法给出数据的内在含义
欢迎关注我公众号:AI悦创,有更多更好玩的等你发现!
::: details 公众号:AI悦创【二维码】
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WYM7nOC8-1662516904384)(/gzh.jpg)]
:::
::: info AI悦创·编程一对一
AI悦创·推出辅导班啦,包括「Python 语言辅导班、C++ 辅导班、java 辅导班、算法/数据结构辅导班、少儿编程、pygame 游戏开发」,全部都是一对一教学:一对一辅导 + 一对一答疑 + 布置作业 + 项目实践等。当然,还有线下线上摄影课程、Photoshop、Premiere 一对一教学、QQ、微信在线,随时响应!微信:Jiabcdefh
C++ 信息奥赛题解,长期更新!长期招收一对一中小学信息奥赛集训,莆田、厦门地区有机会线下上门,其他地区线上。微信:Jiabcdefh
方法一:QQ
方法二:微信:Jiabcdefh
:::
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-I9PiHP9R-1662516904384)(/zsxq.jpg)]
Python实现k-近邻算法案例学习的更多相关文章
- 机器学习 Python实践-K近邻算法
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...
- 用python实现k近邻算法
用python写程序真的好舒服. code: import numpy as np def read_data(filename): '''读取文本数据,格式:特征1 特征2 -- 类别''' f=o ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
随机推荐
- A-卷积网络压缩方法总结
卷积网络的压缩方法 一,低秩近似 二,剪枝与稀疏约束 三,参数量化 四,二值化网络 五,知识蒸馏 六,浅层网络 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好.神经网络的压缩算 ...
- 2022网刃杯ics
目录 easyiec Ncsubj 喜欢移动的黑客 xyp07 ICS6-LED_BOOM 根据大佬的wp后,自己做了一遍 这次学到很多东西 ICS easyiec tcp追踪流直接能看到 编辑 ...
- 如何使用python程序打包工具pyinstaller
**通过**```pythonpyinstaller -F demo.py```**即可把demo.py打包成可独立运行的demo.exe** **pyinstaller在cmd使用格式:***pyi ...
- MVC下拉框
<select> @{ foreach (var item in 循环泛型) { <option value="@item.ID">@item.属性名< ...
- 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置
目录 沁恒CH32V003(一): CH32V003F4P6开发板上手报告和Win10环境配置 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置 硬件准备 沁 ...
- Optional用法与争议点
原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介 要说Java中什么异常最容易出现,我想NullPointerException一定当仁不让,为了解决这种null值 ...
- webpack4--按需加载
在做单页面应用的过程中,通常利用webpack打包文件,将依赖的外部问价单独打一个vendor.js.这样就会有个问题,这个文件会随着你引用的包的增多,体积会越来越大.在路由中利用import 引用文 ...
- perl chmod
chmod函数改变一列文件的权限.列表的第一个元素必须是数字模式.chmod函数返回成功改变了的文件的数目.如: $cnt = chmod 0755, 'file1', 'file2'; 其中最前面 ...
- 钉钉dingtalk=6.3.5版本RCE复现
看到网上公开了钉钉RCE的利用方式,第一时间来复现一下. 钉钉dingtalk=6.3.5版本RCE复现 免责声明: 影响版本: 漏洞POC: 漏洞复现: 存在漏洞版本下载地址: 免责声明: 本文章仅 ...
- Kubernetes_Deployment全解析(无状态的Pod)
前言 一.创建Deployment 1.1 创建Deployment apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deploy ...