语义分割的U-Net网络结构Unet是2015年诞生的模型,它几乎是当前segmentation项目中应用最广的模型。Unet能从更少的训练图像中进行学习,当它在少于40张图的生物医学数据集上训练时,IOU值仍能达到92%。Unet网络非常简单,前半部分作用是特征提取,后半部分是上采样。在一些文献中也把这样的结构叫做编码器-解码器结构。由于此网络整体结构类似于大写的英文字母U,故得名U-net。

论文链接: https://arxiv.org/pdf/1505.04597v1.pdf

github:  https://github.com/milesial/Pytorch-UNet

1 Motivation

生物医学图像处理面临的问题

  • 经典卷积网络大部分都是针对图像分类任务的,但是在一些特定场景,如医疗图像处理领域,应是pixel-wise像素级的处理,输入输出均是图像,即图像分割。
  • 生物医学任务中没有很多标注的数据集

为了解决这两个问题,Ciresan用滑窗法来预测patch的类别(patch指像素周围的局部区域)。 该算法有两个主要问题:(1)由于每个patch都需要训练导致这个算法很慢,且patch之间有很多重复。(2)定位准确率和上下文联系之间需要平衡,patch越大需要pooling越多准确率越低,patch越小则不具备上下文联系。

2 U-Net网络

  作者以FCN全卷积神经网络为基础设计了Unet,其中包含两条串联的路径:contracting path用来提取图像特征,捕捉context,将图像压缩为由特征组成的feature maps;expanding path用来精准定位,将提取的特征解码为与原始图像尺寸一样的分割后的预测图像。

  FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单,只用了一个deconvolution的操作,之后并没有跟上卷积结构。第二个区别就是skip connection,FCN用的是加操作(sum),U-Net用的是叠操作(concat)。最重要的是编码和解码(encoder-decoder)的思路,编码和解码常用于压缩图像和去噪声,后来这个思路被用在了图像分割上,非常简洁好用。

  • 网络左边一侧作者称之为contracting path,右边一侧为expanding path。
  • 蓝色箭头为卷积层,卷积层的stride=1,padding=0,因此卷积后特征层的宽高会减2。卷积层后接ReLU激活函数,没有BN层(BN由Google于2015年提出)。
  • 池化层stride=2,池化后宽高减半,通道数不变。池化层之后的卷积层将通道数翻倍。
  • 绿色的up-conv是转置卷积,将特征层的宽高×2,通道数减半。
  • 灰色copy and crop是先对左边的特征层进行中心裁剪(保留中心特征),再与右边path对应的特征层进行通道数上的concat。
  • 最后的1×1的卷积没有ReLU,输出通道数为类别数。

Overlap-tile

  可以发现Unet论文中输入的图像是572×572,但是输出图像大小为388×388。也就是说推理上图黄色部分,需要蓝色区域内的图像数据作为输入。当黄色区域位于边缘时,就会产生边缘数据缺失的情况(上图右边蓝框中的空白部分)。我们可以在预处理中,对输入图像进行padding,通过padding扩大输入图像的尺寸,使得最后输出的结果正好是原始图像的尺寸,同时输入图像块(黄框)的边界也获得了上下文信息从而提高预测的精度,本文用的是mirror padding。我们自己搭建网络的时候,输入输出往往是一样大小的(padding=1),因此不需要考虑这个问题。

3 训练

3.1 数据增强

网络需要大量标注训练样本,生物医学任务中没有数千个标注的数据集,所以需要对数据进行数据扩张。作者采用了弹性变形的图像增广,以此让网络学习更稳定的图像特征。因为数据集是细胞组织的图像,细胞组织的边界每时每刻都会发生不规则的畸变,所以这种弹性变形的增广是非常有效的。论文笔记:图像数据增强之弹性形变(Elastic Distortions)

3.2 损失函数的权重

细胞组织图像的一大特点是,多个同类的细胞会紧紧贴合在一起,其中只有细胞壁或膜组织分割。因此,作者在计算损失的过程中,给两个细胞的边缘部分及细胞间的背景部分增加了损失的权重,以此让网络更加注重这类重合的边缘信息。

如上图所示,图(a)为原始图像,图(b)为人工标注的实例分割ground truth,图(c)为mask,图(d)为每个像素的损失权重weight map。首先用形态学操作获得边界,再用下面的公式计算weight map

其中,wc是为了类别平衡,d1是该像素到最近细胞边界的距离,d2是到第二近的细胞边界的距离。在作者实验中设置w0=10,σ≈5pixels.

3.3 其他

  • 优化器:SGD + momentum(0.99)
  • batch:为了最大限度的使用GPU显存,比起输入一个大的batch size,更倾向于大量输入tiles,因此实验batch size为1。
  • 损失函数:pixel-wise softmax + cross_entropy
  • 初始化高斯分布权重:在具有许多卷积层和通过网络的不同路径的深度网络中,权重的良好初始化非常重要。 否则,网络的某些部分可能会进行过多的激活,而其他部分则永远不会起作用。 理想情况下,应调整初始权重,以使网络中的每个特征图都具有大约单位方差。作者用的高斯分布的权重。

参考

1. 精读论文U-Net

2. 论文笔记:图像数据增强之弹性形变(Elastic Distortions)

3. 研习U-Net

【论文笔记】UNet的更多相关文章

  1. [AI] 论文笔记 - U-Net 简单而又接近本质的分割网络

    越简单越接近本质. 参考资料 U-Net: Convolutional Networks for Biomedical Image Segmentation Abstract & Introd ...

  2. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  3. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  4. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  5. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  6. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  7. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  8. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  9. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  10. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

随机推荐

  1. JavaEE Day04 MySQL多表&事务

    今日内容 多表查询 事务 DCL用于控制权限和管理用户,DBA完成:SQL中四类DDL  DML  DQL  DCL 一.多表查询 1.多表查询_概述 1.1 查询语法     select      ...

  2. 【Java SE进阶】Day13 Stream流、方法引用

    〇.总结 Stream流的方法:forEach.filter.map.count.limit.skip.concat(结合之前的Collectors接口) 方法引用:Lambda的其他类方法体相同,如 ...

  3. Scanner例题讲解

    Scanner例题讲解 题:输入多个平均数,求其总和与平均数;每输入一个数用回车确认,通过输入非数字来结束输入并输出执行结果  public class Demo05 {     //输入多个平均数, ...

  4. (java 实现开箱即用基于 redis 的分布式锁

    项目简介 lock 为 java 设计的分布式锁,开箱即用,纵享丝滑. 开源地址:https://github.com/houbb/lock 目的 开箱即用,支持注解式和过程式调用 基于 redis ...

  5. win7安装Anaconda+TensorFlow(cpu版)+配置PyCharm

    本着不折腾不舒服斯基,好久没安装软件玩了.今天趁天气不错,安装下TensorFlow(cpu版)(因为没钱上GPU),首先在网上搜了下教程,原文出处: https://blog.csdn.net/u0 ...

  6. JavaScript 中URL 查询字符串(query string)的序列与反序列化

    方法一: 在 JavaScript 中,可以使用 URLSearchParams 对象来处理 URL 中的查询字符串. 序列化(将 JavaScript 对象转换为查询字符串)可以使用 URLSear ...

  7. 蚂蚁感冒【第五届蓝桥杯省赛C++A/B组】

    蚂蚁感冒 长 \(100\) 厘米的细长直杆子上有 \(n\) 只蚂蚁. 它们的头有的朝左,有的朝右. 每只蚂蚁都只能沿着杆子向前爬,速度是 1 厘米/秒. 当两只蚂蚁碰面时,它们会同时掉头往相反的方 ...

  8. NOIP2018 解题报告

    NOIP2018 解题报告 前记 在本届noip,作为第一年参加提高组的我,感受到了各位大佬神仙恐怖如斯的实力.身在弱省,但是依旧难以取得成绩,果然oi赛场,菜是原罪 好了,到了赛后,还是总结一下题目 ...

  9. 玩转web3第一篇——web3-react

    概况 web3-react是由Noah Zinsmeister开发的一个web3框架,主要功能是实时获取DApp里的关键数据(如用户当前连接的地址.网络.余额等). Noah也是著名的去中心化交易所u ...

  10. 理论+实践,教你如何使用Nginx实现限流

    摘要:Nginx作为一款高性能的Web代理和负载均衡服务器,往往会部署在一些互联网应用比较前置的位置.此时,我们就可以在Nginx上进行设置,对访问的IP地址和并发数进行相应的限制. 本文分享自华为云 ...