Redis系列1:深刻理解高性能Redis的本质

Redis系列2:数据持久化提高可用性

Redis系列3:高可用之主从架构

Redis系列4:高可用之Sentinel(哨兵模式)

Redis系列5:深入分析Cluster 集群模式

追求性能极致:Redis6.0的多线程模型

追求性能极致:客户端缓存带来的革命

Redis系列8:Bitmap实现亿万级数据计算

Redis系列9:Geo 类型赋能亿级地图位置计算

1 前言

我们来回顾下在这个系列的第一篇 深刻理解高性能Redis的本质 中介绍过Redis的几种基本数据结构,

它服务于各种不同的业务场景而设计的,比如:

  • 动态字符串(REDIS_STRING):整数(REDIS_ENCODING_INT)、字符串(REDIS_ENCODING_RAW)
  • 双端列表(REDIS_ENCODING_LINKEDLIST)
  • 压缩列表(REDIS_ENCODING_ZIPLIST)
  • 跳跃表(REDIS_ENCODING_SKIPLIST)
  • 哈希表(REDIS_HASH)
  • 整数集合(REDIS_ENCODING_INTSET)

除了这些常见数据类型,还有一些不常用的数据类型,如 BitMap、Geo、HyperLogLog 等等,他们在各自的方向为不同的类型的数据统计给出解决方案。

  • 位图(BitMap)计算:可以应用于任何大数据场景下的二值计算,比如 是否登录、是否在线、是否签到、用户性别状态、IP黑名单、是否VIP用户统计 等等场景。
  • Geo类型:记录地理空间信息,如 地理坐标存储、位置计算、距离计算等能力,普遍运用在地图业务中的各种场景。

这一篇我们来介绍下HyperLogLog,HyperLogLog 主要用于Redis基数的统计,比如IP统计,用户访问量,页面访问量。

2 关于HyperLogLog

HyperLogLog 主要用于Redis 的基数统计,它的数据结构专门设计用来做数据合并和计算,并能节省大量的空间。

基数计数( cardinality counting) 通常用来统计一个集合中不重复的元素个数 , 例如统计某个网站的UV、PV或者网站搜索的的关键词数量。

在各种应用领域基数统计被广泛应用,如数据分析、网络监控指标、存储性能优化等。

简单来说,基数计数就是记录集合中所有不重复的元素Su ,当新增元素Xa时,判断Su中是否包含,不包含则将其加入Su,包含则不加入,计数值就是Su 的元素数量总和。

当然这种做法也存在两个问题:

  1. 当统计的数据量变大时,相应的存储内存也会线性增长
  2. 当集合Su 变大,判断其是否包含新加入元素的成本变大

2.1 实际应用场景

很多计数类场景,比如 每日注册 IP 数、每日访问 IP 数、页面实时访问数 PV、访问用户数 UV等。

因为主要的目标高效、巨量地进行计数,所以对存储的数据的内容并不关系。也就是说它只能用于统计数量,没办法知道具体的统计对象的内容。

  • 统计单日一个页面的访问量(PV),单次访问就算一次。
  • 统计单日一个页面的用户访问量(UV),即按照用户为维度计算,单个用户一天内多次访问也只算一次。
  • 多个key的合并统计,某个门户网站的所有模块的PV聚合统计就是整个网站的总PV。

2.2 高效和海量特性

如果我们使用普通集合,也能够实现对巨量数据的存储和统计么,但是存储量会大很多,性能也比较差。

以百度搜索为例,如果要做百度指数的计算,针对来访IP进行统计。那么如果每天 有 1000 万 IP,一个 IP 占位 15 字节,那么 1000 万个 IP 就是 143M。

10,000,000 * 15 /(1024 * 1024)  = 143.05 M

如果使用 HyperLogLog ,那么在 Redis 中每个键占用的内容都是 12K,理论上能够存储 264 个值,即18446744073709551616,这个数是巨量,Java中long类型也只能计算到 262

无论存储何值,它一个基于基数估算的算法HyperLogLog Counting(简称HLLC),使用少量固定的内存去存储并识别集合中的唯一元素。

HLLC采用了分桶平均的思想来消减误差,在Redis中, 有16384个桶 。而HyperLogLog的标准偏差公式是1.04 / sqrt(m),m 为桶的个数。所以

1.04 / sqrt(16384) = 1.04 / 128 = 0.008125

所以这个计数的估算,是一个带有 0.81% 标准偏差的近似值。

HyperLogLog 算法原理参考这两篇,写的很清晰:

https://zhuanlan.zhihu.com/p/77289303

http://www.javashuo.com/article/p-mmwxrmjm-ga.html

3 HyperLogLog所支持的能力

HyperLogLog数据结构的命令有三个:PFADD、PFCOUNT、PFMERGE

3.1 PFADD 添加计数

Redis Pfadd 命令将所有元素添加到 HyperLogLog 数据结构中。

语法如下:

redis > PFADD key element [element ...]

下面举例了网站统计模块添加IP的两种情况

/* 对访问百度网站(key=baidu:ip_address)的IP进行添加 */
redis> PFADD baidu:ip_address "192.168.0.1" "192.168.0.2" "192.168.0.3"
(integer) 1 /* 如果IP已经存在,则进行忽略,不对估计数量进行更新 */
redis> PFADD baidu:ip_address "192.168.0.3"
(integer) 0 # IP已经存在

3.2 PFCOUNT 统计数量

Redis Pfcount 命令返回给定 HyperLogLog 的基数的估算值。

语法如下:

redis > PFCOUNT key [key ...]

下面估算了访问IP的基数的值,返回 1034546 。

redis> PFCOUNT baidu:ip_address

(integer) 1034546

3.3 PFMERGE 合并统计

Redis PFMERGE 命令将多个 HyperLogLog 合并为一个 HyperLogLog ,合并后的 HyperLogLog 的基数估算值是对给定 HyperLogLog 进行并集计算得出的。

所以有重复的会被统计成一条数据。

合并得出的 HyperLogLog 会被储存在 destkey 键里面, 如果该键并不存在,那么命令在执行之前, 会先为该键创建一个空的 HyperLogLog 。

语法如下:

redis > PFMERGE destkey sourcekey [sourcekey ...]

下面演示了合并和统计的过程:

/* 统计百度 baidu:ip_address 访问IP */
redis> PFADD baidu:ip_address "192.168.0.1" "192.168.0.2" "192.168.0.3"
(integer) 1 /* 统计淘宝 taobao:ip_address 访问IP */
redis> PFADD taobao:ip_address "192.168.0.3" "192.168.0.4" "192.168.0.5"
(integer) 1 /* 合并且去重之后放在 total:ip_address */
redis> PFMERGE total:ip_address baidu:ip_address taobao:ip_address
OK /* 结果为5 */
redis> PFCOUNT total:ip_address
(integer) 5

4 总结

基数计数是用于统计一个集合中不重复的元素个数,好比平常需求场景有,统计页面的UV或者统计在线的用户数、注册IP数等。HyperLogLog 主要基于Redis能力下的基数统计。HyperLogLog的主要使用场景包括:

  • 统计单日一个页面的访问量(PV),单次访问就算一次。
  • 统计单日一个页面的用户访问量(UV),即按照用户为维度计算,单个用户一天内多次访问也只算一次。
  • 多个key的合并统计,某个门户网站的所有模块的PV聚合统计就是整个网站的总PV。

Redis系列10:HyperLogLog实现海量数据基数统计的更多相关文章

  1. redis 系列10 字符串对象

    一. 字符串对象编码 Redis中字符串可以存储3种类型,分别是字节串(byte string).整数.浮点数.在上章节中讲到字符串对象的编码可以是int, raw,embstr. 如果一个字符串对象 ...

  2. 【目录】redis 系列篇

    随笔分类 - redis 系列篇 redis 系列27 Cluster高可用 (2) 摘要: 一. ASK错误 集群上篇最后讲到,对于重新分片由redis-trib负责执行,关于该工具以后再介绍.在进 ...

  3. Redis系列(三):Bitmaps和HyperLogLog

    本篇介绍Bitmaps和HyperLogLog. 一.Bitmaps 计算机中最小的单位是bit(位),很多计算机语言也提供了位操作符,比如Java中就有&.|.>>.>&g ...

  4. redis常用数据类型 HyperLoglog

    1.HyperLoglog简介 HyperLoglog是redis新支持的两种类型中的另外一种(上一种是位图类型Bitmaps).主要适用场景是海量数据的计算.特点是速度快.占用空间小. 同样是用于计 ...

  5. redis系列:redis介绍与安装

    前言 这个redis系列的文章将会记录博主学习redis的过程.基本上现在的互联网公司都会用到redis,所以学习这门技术于你于我都是有帮助的. 博主在写这个系列是用的是目前最新版本4.0.10,虚拟 ...

  6. Redis系列8:Bitmap实现亿万级数据计算

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  7. Redis系列9:Geo 类型赋能亿级地图位置计算

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  8. Redis系列(2)之数据类型

    Redis系列(2)之数据类型 <Redis系列(1)之安装>中介绍了Redis支持以下几种数据类型,那么本节主要介绍学习下这几种数据类型的基本操作 字符串类型,string 散列类型,h ...

  9. Python操作redis系列之 列表(list) (四)

    # -*- coding: utf- -*- import redis r =redis.Redis(host=,password="ZBHRwlb1608") 1. Lpush ...

随机推荐

  1. 解决eclipse中的Java文件,使用idea打开的乱码问题

    吐槽: 在克隆一些Github上面资源的时候,使用idea打开,会出现乱码的情况 而使用eclipse打开,这种情况就会消失.「是因为eclipse使用的是GBK编码,idea使用的是utf-8」 这 ...

  2. HC32L110(五) Ubuntu20.04 VSCode的Debug环境配置

    目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...

  3. KingbaseES启动数据库失败后如何分析

    关键字: KingbaseES.sys_ctl.启动日志 一.KingbaseES数据库服务启动 1.1 数据库启动机制 1) 数据库通过sys_ctl工具手工启动数据库服务kingbase. 2) ...

  4. Mysql_Order_By的坑

    CREATE TABLE `tt_transfer_container_pick_config` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, ...

  5. 【面试题】JS使用parseInt()、正则截取字符串中数字

    JS使用parseInt()和正则截取字符串中数字 点击打开视频讲解更加详细 parseInt() 函数 定义和用法 parseInt() 函数可解析一个字符串,并返回一个整数. 当参数 radix ...

  6. 聊聊 asp.net core 认证和授权

    使用asp.net core 开发应用系统过程中,基本上都会涉及到用户身份的认证,及授权访问控制,因此了解认证和授权流程也相当重要,下面通过分析asp.net core 框架中的认证和授权的源码来分析 ...

  7. 快速排序C语言版图文详解

    ​ 算法原理:选一个数位基准,将序列分成两个部分,一边全是比它小序列,另一边全是比它大序列.然后再分别对比他小的序列和比再次进行基准分割.依次分割下去,得到一个有序的队列. 原理图示: ​编辑 ​编辑 ...

  8. 基于 iframe 的微前端框架 —— 擎天

    vivo 互联网前端团队- Jiang Zuohan 一.背景 VAPD是一款专为团队协作办公场景设计的项目管理工具,实践敏捷开发与持续交付,以「项目」为核心,融合需求.任务.缺陷等应用,使用敏捷迭代 ...

  9. LeetCode - 数组的旋转总结

    1. 数组的旋转总结 数组的旋转指的是将数组的最后若干个数提前到数组前面,数组的翻转指的是将数组的顺序颠倒.旋转可以通过多次翻转实现. 数组的翻转很简单,通过双指针来实现:交换数组的第一个数和最后一个 ...

  10. MatrixOne从入门到实践08——SSB性能测试

    MatrixOne从入门到实践--SSB性能测试 SSB 星型模式基准测试是 OLAP 数据库性能测试的常用场景,通过本篇教程,您可以了解到如何在 MatrixOne 中实现 SSB 测试. 测试环境 ...