【打怪升级】【rocketMq】rocket的持久化
rocket持久化保证的思想有两点:1是刷盘保证大部分数据不丢失;2是持久化文件的处理,零拷贝技术和内存页,NIO模型保证处理能力
文件持久化目录
├──abort:rocket broker启动检查的文件,正常启动会写入一个abort,正常退出会删除abort,通过它来判断上一次是否异常退出
├──checkpoint:随着broker启动,加载的历史检查点
├──lock:全局资源的文件锁
├──commitlog:broker存储的核心,我们都是到rocket是broker集中存储,落地存盘就存在commitlog里
│ ├──00000000000000000000(示例)rocket会对commitlog进行预创建,并将消息写入,每次创建的文件根据当前文件偏移量决定,例如第一次创建就是00000000000000000000
├──compaction:(基于rocket 5.0)
│ ├──position-checkpoint:缓存上一次消费的检查点,每次处理完成后会更新
├──config:
│ ├──consumerFilter.json:存储对应topic下的消息过滤规则:ConcurrentMap<String/*Topic*/, FilterDataMapByTopic>
│ ├──consumerOffset.json:根据消费者组存储的每个消费者消费点位:ConcurrentMap<String/* topic@group */, ConcurrentMap<Integer, Long>>
│ ├──consumerOrderInfo.json:顺序消息顺序:ConcurrentHashMap<String/* topic@group*/, ConcurrentHashMap<Integer/*queueId*/, OrderInfo>>
│ ├──delayOffset.json:针对消费者pull的延时队列拉取消费点位
│ ├──subscriptionGroup.json:消费者组对应订阅的消息信息,其实就是broker接收的消费者信息
│ ├──topics.json:存储对应的topic信息
│ ├──timercheck:基于定时消息的时间轮配置文件,rocket5.0以上版本
│ ├──timermetrics:基于定时消息的时间轮配置文件,rocket5.0以上版本
├──consumequeue:broker对应topic下队列的消费信息
│ ├──%{topicName}:主题名称
│ │ ├──%{queueId}:队列id
│ │ │ ├──00000000000000000000:消费点位
├──index:索引文目录
│ ├──00000000000000000000:索引文件,快速定位commitlog中的消息位置
└──timerwheel:基于时间轮算法实现定时消息的配置
这些文件是broker支持容灾的基础,rocket集群其实就是broker集群的能力,通过这些配置文件可以做到不丢失,在broker启动时会加载对应的配置。
- /**
- * 上层抽象的配置工厂,在broker启动时会根据组件依次加载,并将文件读取到变量中。例如consumerOffsetTable
- * 抽象类下每一个manager加载对应的配置信息
- */
- public abstract class ConfigManager {
- private static final Logger log = LoggerFactory.getLogger(LoggerName.COMMON_LOGGER_NAME);
- public abstract String encode();
store存储
rocket基于文件的处理,底层是采用mmap的方式和NIO的byteBuffer,在store上层封装了基本的组件
- /**
- * TODO store消息处理的核心对象 mappedFile封装了对消息处理 写入
- * NIO 的文件到磁盘的处理工具
- */
- public class DefaultMappedFile extends AbstractMappedFile {
- // 操作系统数据页 4K,unix系列通常是这个大小
- public static final int OS_PAGE_SIZE = 1024 * 4;
- public static final Unsafe UNSAFE = getUnsafe();
- private static final Method IS_LOADED_METHOD;
- public static final int UNSAFE_PAGE_SIZE = UNSAFE == null ? OS_PAGE_SIZE : UNSAFE.pageSize();
- protected static final Logger log = LoggerFactory.getLogger(LoggerName.STORE_LOGGER_NAME);
- // mq总共分配的映射文件内存大小
- protected static final AtomicLong TOTAL_MAPPED_VIRTUAL_MEMORY = new AtomicLong(0);
- // mq总共创建的内存文件映射数量
- protected static final AtomicInteger TOTAL_MAPPED_FILES = new AtomicInteger(0);
- protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> WROTE_POSITION_UPDATER;
- protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> COMMITTED_POSITION_UPDATER;
- protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> FLUSHED_POSITION_UPDATER;
- // 当前数据的写入位置指针,下次写数据从此开始写入
- protected volatile int wrotePosition;
- // 当前数据的提交指针,指针之前的数据已提交到fileChannel,commitPos~writePos之间的数据是还未提交到fileChannel的
- protected volatile int committedPosition;
- // 当前数据的刷盘指针,指针之前的数据已落盘,commitPos~flushedPos之间的数据是还未落盘的
- protected volatile int flushedPosition;
- //文件大小 字节
- protected int fileSize;
- // TODO 磁盘文件的内存文件通道对象 也是mmap的方式体现
- protected FileChannel fileChannel;
- /**
- * Message will put to here first, and then reput to FileChannel if writeBuffer is not null.
- */
- // 异步刷盘时数据先写入writeBuf,由CommitRealTime线程定时200ms提交到fileChannel内存,再由FlushRealTime线程定时500ms刷fileChannel落盘
- protected ByteBuffer writeBuffer = null;
- // 堆外内存池,服务于异步刷盘机制,为了减少内存申请和销毁的时间,提前向OS申请并锁定一块对外内存池,writeBuf就从这里获取
- protected TransientStorePool transientStorePool = null;
- // 文件起始的字节
- protected String fileName;
- // 文件的初始消费点位,跟文件的命名相关 例如 00000000000000000000 就代表从0开始,默认一个commitLog是1G 大小,那么超过之后会生成新的commitLog 文件名称就是当前文件起始的偏移量
- protected long fileFromOffset;
- protected File file;
- // 磁盘文件的内存映射对象,同步刷盘时直接将数据写入到mapedBuf
- protected MappedByteBuffer mappedByteBuffer;
- // 最近操作的时间戳
- protected volatile long storeTimestamp = 0;
- protected boolean firstCreateInQueue = false;
- private long lastFlushTime = -1L;
- protected MappedByteBuffer mappedByteBufferWaitToClean = null;
- protected long swapMapTime = 0L;
- protected long mappedByteBufferAccessCountSinceLastSwap = 0L;
首先,核心的DefaultMappedFile 使用了 FileChannel 通道,它也是基于mmap的实现零拷贝技术。
其中它定义了三个指针,分别是
wrotePosition:当前数据的写入位置指针,下次写数据从此开始写入
committedPosition:当前数据的提交指针,指针之前的数据已提交到fileChannel,commitPos~writePos之间的数据是还未提交到fileChannel的
flushedPosition:当前数据的刷盘指针,指针之前的数据已落盘,commitPos~flushedPos之间的数据是还未落盘的
同时,定义了ByteBuffer,基于NIO在异步刷盘时,先会将数据写入byteBuffer,然后会有定时线程会定时拉取到fileChannel通道,最后将fileChannel进行刷盘
- /**
- * 根据队列中的AllocateRequest创建下一个commitLog
- */
- public void run() {
- log.info(this.getServiceName() + " service started");
- while (!this.isStopped() && this.mmapOperation()) {
- }
- log.info(this.getServiceName() + " service end");
- }
AllocateRequest封装的是对commitLog预处理的动作,AllocateRequest是对预创建commitLog的封装,会在处理时预创建并将放入队列,在store启动时会启动AllocateMappedFileService的线程监听创建
- /**
- * TODO commitLog 创建预处理封装的核心
- * @param nextFilePath
- * @param nextNextFilePath
- * @param fileSize
- * @return
- */
- public MappedFile putRequestAndReturnMappedFile(String nextFilePath, String nextNextFilePath, int fileSize) {
- int canSubmitRequests = 2;
- if (this.messageStore.isTransientStorePoolEnable()) {
- if (this.messageStore.getMessageStoreConfig().isFastFailIfNoBufferInStorePool()
- && BrokerRole.SLAVE != this.messageStore.getMessageStoreConfig().getBrokerRole()) { //if broker is slave, don't fast fail even no buffer in pool
- canSubmitRequests = this.messageStore.getTransientStorePool().availableBufferNums() - this.requestQueue.size();
- }
- }
- //封装一个AllocateRequest放在队列里,异步线程方式去获取执行
- AllocateRequest nextReq = new AllocateRequest(nextFilePath, fileSize);
- boolean nextPutOK = this.requestTable.putIfAbsent(nextFilePath, nextReq) == null;
- if (nextPutOK) {
- if (canSubmitRequests <= 0) {
- log.warn("[NOTIFYME]TransientStorePool is not enough, so create mapped file error, " +
- "RequestQueueSize : {}, StorePoolSize: {}", this.requestQueue.size(), this.messageStore.getTransientStorePool().availableBufferNums());
- this.requestTable.remove(nextFilePath);
- return null;
- }
- boolean offerOK = this.requestQueue.offer(nextReq);
- if (!offerOK) {
- log.warn("never expected here, add a request to preallocate queue failed");
- }
- canSubmitRequests--;
- }
- AllocateRequest nextNextReq = new AllocateRequest(nextNextFilePath, fileSize);
- boolean nextNextPutOK = this.requestTable.putIfAbsent(nextNextFilePath, nextNextReq) == null;
- if (nextNextPutOK) {
- if (canSubmitRequests <= 0) {
- log.warn("[NOTIFYME]TransientStorePool is not enough, so skip preallocate mapped file, " +
- "RequestQueueSize : {}, StorePoolSize: {}", this.requestQueue.size(), this.messageStore.getTransientStorePool().availableBufferNums());
- this.requestTable.remove(nextNextFilePath);
- } else {
- boolean offerOK = this.requestQueue.offer(nextNextReq);
- if (!offerOK) {
- log.warn("never expected here, add a request to preallocate queue failed");
- }
- }
- }
- if (hasException) {
- log.warn(this.getServiceName() + " service has exception. so return null");
- return null;
- }
- // 阻塞等待AllocateMapFile线程创建好文件并返回
- AllocateRequest result = this.requestTable.get(nextFilePath);
- try {
- if (result != null) {
- messageStore.getPerfCounter().startTick("WAIT_MAPFILE_TIME_MS");
- boolean waitOK = result.getCountDownLatch().await(waitTimeOut, TimeUnit.MILLISECONDS);
- messageStore.getPerfCounter().endTick("WAIT_MAPFILE_TIME_MS");
- if (!waitOK) {
- log.warn("create mmap timeout " + result.getFilePath() + " " + result.getFileSize());
- return null;
- } else {
- this.requestTable.remove(nextFilePath);
- return result.getMappedFile();
- }
- } else {
- log.error("find preallocate mmap failed, this never happen");
- }
- } catch (InterruptedException e) {
- log.warn(this.getServiceName() + " service has exception. ", e);
- }
在 Broker 初始化时会启动管理 MappedFile 创建的 AllocateMappedFileService 异步线程。消息处理线程 和 AllocateMappedFileService 线程通过队列 requestQueue 关联。
消息写入时调用 AllocateMappedFileService 的 putRequestAndReturnMappedFile 方法往 requestQueue 放入提交创建 MappedFile 请求,这边会同时构建两个 AllocateRequest 放入队列。
AllocateMappedFileService 线程循环从 requestQueue 获取 AllocateRequest 来创建 MappedFile。消息处理线程通过 CountDownLatch 等待获取第一个 MappedFile 创建成功就返回。
当消息处理线程需要再次创建 MappedFile 时,此时可以直接获取之前已预创建的 MappedFile。这样通过预创建 MappedFile ,减少文件创建等待时间。
store消息存储全流程
从图上可以看到,从生产者到消费者,store扮演了重要的角色。
生产者发送消息后,会进行消息存盘,消费者消费消息后,会进行消费进度存盘。
下面我们详细说说store的流程
消息存储-从生产者到磁盘
消息被生产者创建并发送到broker后,会对消息先进行存盘。如果是异步消息,存盘是由单独的子线程定时去处理的,如果是同步消息,则会阻塞等待消息处理完成后再进行返回。
消息首先会经过producer,组装后会通过netty发送给broker,我们只关系broker的处理流程,如果想了解生产者之前的处理方式,可参考之前的文章。
首先,broker中processor是broker对client基于netty的一些动作通知的封装,AbstractSendMessageProcessor上层会封装一些基本功能,例如消息重试,消息发送私信队列,以及一些beforeHook和afterHook前后置处理钩子函数,在producer发送sendMessage动作后,会将req发送至SendMessageProcessor,SendMessageProcessor 是client做sendMessage动作时,broker处理发送消息的加工者。
- public RemotingCommand processRequest(ChannelHandlerContext ctx,
- RemotingCommand request) throws RemotingCommandException {
- SendMessageContext sendMessageContext;
- switch (request.getCode()) {
- case RequestCode.CONSUMER_SEND_MSG_BACK:
- return this.consumerSendMsgBack(ctx, request);
- default:
- //发送成功的处理
- SendMessageRequestHeader requestHeader = parseRequestHeader(request);
- if (requestHeader == null) {
- return null;
- }
- TopicQueueMappingContext mappingContext = this.brokerController.getTopicQueueMappingManager().buildTopicQueueMappingContext(requestHeader, true);
- RemotingCommand rewriteResult = this.brokerController.getTopicQueueMappingManager().rewriteRequestForStaticTopic(requestHeader, mappingContext);
- if (rewriteResult != null) {
- return rewriteResult;
- }
- sendMessageContext = buildMsgContext(ctx, requestHeader, request);
- try {
- //加载前置钩子函数
- this.executeSendMessageHookBefore(sendMessageContext);
- } catch (AbortProcessException e) {
- final RemotingCommand errorResponse = RemotingCommand.createResponseCommand(e.getResponseCode(), e.getErrorMessage());
- errorResponse.setOpaque(request.getOpaque());
- return errorResponse;
- }
- RemotingCommand response;
- //针对单消息处理和批量消息处理,并执行后置钩子函数
- if (requestHeader.isBatch()) {
- response = this.sendBatchMessage(ctx, request, sendMessageContext, requestHeader, mappingContext,
- (ctx1, response1) -> executeSendMessageHookAfter(response1, ctx1));
- } else {
- response = this.sendMessage(ctx, request, sendMessageContext, requestHeader, mappingContext,
- (ctx12, response12) -> executeSendMessageHookAfter(response12, ctx12));
- }
- return response;
- }
- }
如果消息是重试消息,则将消息发送到%retry%-topic队列进行重试,并处理重试等级及重试次数。
这里最核心的是针对单消息处理和批量消息处理,对应的是处理单消息和多消息,broker封装的MessageBatch就是批量消息。
- public RemotingCommand sendMessage(final ChannelHandlerContext ctx,
- final RemotingCommand request,
- final SendMessageContext sendMessageContext,
- final SendMessageRequestHeader requestHeader,
- final TopicQueueMappingContext mappingContext,
- final SendMessageCallback sendMessageCallback) throws RemotingCommandException {
- final RemotingCommand response = preSend(ctx, request, requestHeader);
- if (response.getCode() != -1) {
- return response;
- }
- final SendMessageResponseHeader responseHeader = (SendMessageResponseHeader) response.readCustomHeader();
- //获取消息内容
- final byte[] body = request.getBody();
- //获取消息指定队列id
- int queueIdInt = requestHeader.getQueueId();
- TopicConfig topicConfig = this.brokerController.getTopicConfigManager().selectTopicConfig(requestHeader.getTopic());
- //如果队列id小于0,默认是非法的id,则重新分配一个队列进行绑定
- if (queueIdInt < 0) {
- queueIdInt = randomQueueId(topicConfig.getWriteQueueNums());
- }
- MessageExtBrokerInner msgInner = new MessageExtBrokerInner();
- msgInner.setTopic(requestHeader.getTopic());
- msgInner.setQueueId(queueIdInt);
- Map<String, String> oriProps = MessageDecoder.string2messageProperties(requestHeader.getProperties());
- //如果是重试消息或达到最大次数进入死信队列的消息,则直接返回
- if (!handleRetryAndDLQ(requestHeader, response, request, msgInner, topicConfig, oriProps)) {
- return response;
- }
- msgInner.setBody(body);
- msgInner.setFlag(requestHeader.getFlag());
- String uniqKey = oriProps.get(MessageConst.PROPERTY_UNIQ_CLIENT_MESSAGE_ID_KEYIDX);
- if (uniqKey == null || uniqKey.length() <= 0) {
- uniqKey = MessageClientIDSetter.createUniqID();
- oriProps.put(MessageConst.PROPERTY_UNIQ_CLIENT_MESSAGE_ID_KEYIDX, uniqKey);
- }
- MessageAccessor.setProperties(msgInner, oriProps);
- CleanupPolicy cleanupPolicy = CleanupPolicyUtils.getDeletePolicy(Optional.of(topicConfig));
- if (Objects.equals(cleanupPolicy, CleanupPolicy.COMPACTION)) {
- if (StringUtils.isBlank(msgInner.getKeys())) {
- response.setCode(ResponseCode.MESSAGE_ILLEGAL);
- response.setRemark("Required message key is missing");
- return response;
- }
- }
- msgInner.setTagsCode(MessageExtBrokerInner.tagsString2tagsCode(topicConfig.getTopicFilterType(), msgInner.getTags()));
- msgInner.setBornTimestamp(requestHeader.getBornTimestamp());
- msgInner.setBornHost(ctx.channel().remoteAddress());
- msgInner.setStoreHost(this.getStoreHost());
- msgInner.setReconsumeTimes(requestHeader.getReconsumeTimes() == null ? 0 : requestHeader.getReconsumeTimes());
- String clusterName = this.brokerController.getBrokerConfig().getBrokerClusterName();
- MessageAccessor.putProperty(msgInner, MessageConst.PROPERTY_CLUSTER, clusterName);
- msgInner.setPropertiesString(MessageDecoder.messageProperties2String(msgInner.getProperties()));
- // Map<String, String> oriProps = MessageDecoder.string2messageProperties(requestHeader.getProperties());
- String traFlag = oriProps.get(MessageConst.PROPERTY_TRANSACTION_PREPARED);
- boolean sendTransactionPrepareMessage = false;
- if (Boolean.parseBoolean(traFlag)
- && !(msgInner.getReconsumeTimes() > 0 && msgInner.getDelayTimeLevel() > 0)) { //For client under version 4.6.1
- /**
- * 如果当前消息已经被消费者消费了不止一次,或者它的消费次数大于0,说明它已经是一个重复消费的消息了,如果它是一个事务消息,这是不允许的
- */
- if (this.brokerController.getBrokerConfig().isRejectTransactionMessage()) {
- response.setCode(ResponseCode.NO_PERMISSION);
- response.setRemark(
- "the broker[" + this.brokerController.getBrokerConfig().getBrokerIP1()
- + "] sending transaction message is forbidden");
- return response;
- }
- sendTransactionPrepareMessage = true;
- }
- long beginTimeMillis = this.brokerController.getMessageStore().now();
- /**
- * TODO 这是才是针对消息做的处理,根据broker同步或异步模型,则针对事务消息和普通消息做消息的处理
- */
- if (brokerController.getBrokerConfig().isAsyncSendEnable()) {
- CompletableFuture<PutMessageResult> asyncPutMessageFuture;
- //putMessage 是处理store 消息存储的核心
- if (sendTransactionPrepareMessage) {
- /**
- * @see org.apache.rocketmq.broker.transaction.queue.TransactionalMessageServiceImpl.asyncPrepareMessage
- * 将消息包装成half消息
- */
- asyncPutMessageFuture = this.brokerController.getTransactionalMessageService().asyncPrepareMessage(msgInner);
- } else {
- asyncPutMessageFuture = this.brokerController.getMessageStore().asyncPutMessage(msgInner);
- }
- final int finalQueueIdInt = queueIdInt;
- final MessageExtBrokerInner finalMsgInner = msgInner;
- /**
- * 处理完成后,异步回调handlePutMessageResult,如果是同步模型,则阻塞handlePutMessageResult等待处理,这里跟下文else中处理方式类似,只是采用非阻塞的异步任务处理
- */
- asyncPutMessageFuture.thenAcceptAsync(putMessageResult -> {
- RemotingCommand responseFuture =
- handlePutMessageResult(putMessageResult, response, request, finalMsgInner, responseHeader, sendMessageContext,
- ctx, finalQueueIdInt, beginTimeMillis, mappingContext, BrokerMetricsManager.getMessageType(requestHeader));
- if (responseFuture != null) {
- doResponse(ctx, request, responseFuture);
- }
- sendMessageCallback.onComplete(sendMessageContext, response);
- }, this.brokerController.getPutMessageFutureExecutor());
- // Returns null to release the send message thread
- return null;
- } else {
- PutMessageResult putMessageResult = null;
- if (sendTransactionPrepareMessage) {
- putMessageResult = this.brokerController.getTransactionalMessageService().prepareMessage(msgInner);
- } else {
- putMessageResult = this.brokerController.getMessageStore().putMessage(msgInner);
- }
- handlePutMessageResult(putMessageResult, response, request, msgInner, responseHeader, sendMessageContext, ctx, queueIdInt, beginTimeMillis, mappingContext, BrokerMetricsManager.getMessageType(requestHeader));
- sendMessageCallback.onComplete(sendMessageContext, response);
- return response;
- }
- }
首先进行前期的组装,消息体,设置队列id,丢弃一部分不合法消息,如重试消息或达到死信队列的消息。
再将消息进行分类,如果是异步消息,且消息类型为事务消息,则异步处理一个asyncHalf,如果是其他类型的消息,根据消息内容进行异步的存储
- //putMessage 是处理store 消息存储的核心
- if (sendTransactionPrepareMessage) {
- /**
- * @see org.apache.rocketmq.broker.transaction.queue.TransactionalMessageServiceImpl.asyncPrepareMessage
- * 将消息包装成half消息
- */
- asyncPutMessageFuture = this.brokerController.getTransactionalMessageService().asyncPrepareMessage(msgInner);
- } else {
- asyncPutMessageFuture = this.brokerController.getMessageStore().asyncPutMessage(msgInner);
- }
等待future处理完成后,异步回调handlePutMessageResult,如果是同步模型,则阻塞handlePutMessageResult等待处理,这里跟下文else中处理方式类似,只是采用非阻塞的异步任务处理;同步方式处理的流程是一样的,只是使用主线程阻塞处理。
如果是采取异步处理,根据上一次的刷盘时间和策略定义3000ms时间进行线程监控,监控流程类似jdk9中对completableFuture中使用get阻塞超时时间。
- @Override
- public PutMessageResult putMessage(MessageExtBrokerInner msg) {
- return waitForPutResult(asyncPutMessage(msg));
- }
- //future异步任务的超时处理
- private PutMessageResult waitForPutResult(CompletableFuture<PutMessageResult> putMessageResultFuture) {
- try {
- int putMessageTimeout =
- Math.max(this.messageStoreConfig.getSyncFlushTimeout(),
- this.messageStoreConfig.getSlaveTimeout()) + 5000;
- return putMessageResultFuture.get(putMessageTimeout, TimeUnit.MILLISECONDS);
- } catch (ExecutionException | InterruptedException e) {
- return new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, null);
- } catch (TimeoutException e) {
- LOGGER.error("usually it will never timeout, putMessageTimeout is much bigger than slaveTimeout and "
- + "flushTimeout so the result can be got anyway, but in some situations timeout will happen like full gc "
- + "process hangs or other unexpected situations.");
- return new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, null);
- }
- }
真正对消息存储的处理,在DefaultMessageStore的asyncPutMessage中
- public CompletableFuture<PutMessageResult> asyncPutMessage(MessageExtBrokerInner msg) {
- //先指定初始化的前置钩子函数
- for (PutMessageHook putMessageHook : putMessageHookList) {
- PutMessageResult handleResult = putMessageHook.executeBeforePutMessage(msg);
- if (handleResult != null) {
- return CompletableFuture.completedFuture(handleResult);
- }
- }
- /**
- * 检查消息的格式,如果格式不合法则直接中断
- */
- if (msg.getProperties().containsKey(MessageConst.PROPERTY_INNER_NUM)
- && !MessageSysFlag.check(msg.getSysFlag(), MessageSysFlag.INNER_BATCH_FLAG)) {
- LOGGER.warn("[BUG]The message had property {} but is not an inner batch", MessageConst.PROPERTY_INNER_NUM);
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, null));
- }
- if (MessageSysFlag.check(msg.getSysFlag(), MessageSysFlag.INNER_BATCH_FLAG)) {
- Optional<TopicConfig> topicConfig = this.getTopicConfig(msg.getTopic());
- if (!QueueTypeUtils.isBatchCq(topicConfig)) {
- LOGGER.error("[BUG]The message is an inner batch but cq type is not batch cq");
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, null));
- }
- }
- long beginTime = this.getSystemClock().now();
- //commitLog处理消息
- CompletableFuture<PutMessageResult> putResultFuture = this.commitLog.asyncPutMessage(msg);
- /**
- * 计算future存储消息所用的时间并将其更新
- */
- putResultFuture.thenAccept(result -> {
- long elapsedTime = this.getSystemClock().now() - beginTime;
- if (elapsedTime > 500) {
- LOGGER.warn("DefaultMessageStore#putMessage: CommitLog#putMessage cost {}ms, topic={}, bodyLength={}",
- elapsedTime, msg.getTopic(), msg.getBody().length);
- }
- this.storeStatsService.setPutMessageEntireTimeMax(elapsedTime);
- if (null == result || !result.isOk()) {
- //如果处理失败,则增加一次保存消息失败的次数
- this.storeStatsService.getPutMessageFailedTimes().add(1);
- }
- });
- return putResultFuture;
- }
可以看到其实asyncPutMessage将处理结果封装成completableFuture异步执行,开始先做了HookBefore的前置钩子函数,然后检查消息格式以及topic的配置,最后在处理完成后更新了处理的时间和失败次数在storeStatus的成员变量中。其中最核心的操作其实是 CompletableFuture<PutMessageResult> putResultFuture = this.commitLog.asyncPutMessage(msg); ,它是根据消息进行append,最核心的处理文件的方式就是mappedFileChannel
- /**
- * TODO 核心存储消息的代码
- * @param msg
- * @return
- */
- public CompletableFuture<PutMessageResult> asyncPutMessage(final MessageExtBrokerInner msg) {
- // Set the storage time
- if (!defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()) {
- msg.setStoreTimestamp(System.currentTimeMillis());
- }
- // Set the message body CRC (consider the most appropriate setting on the client)
- msg.setBodyCRC(UtilAll.crc32(msg.getBody()));
- // Back to Results
- AppendMessageResult result = null;
- StoreStatsService storeStatsService = this.defaultMessageStore.getStoreStatsService();
- String topic = msg.getTopic();
- msg.setVersion(MessageVersion.MESSAGE_VERSION_V1);
- boolean autoMessageVersionOnTopicLen =
- this.defaultMessageStore.getMessageStoreConfig().isAutoMessageVersionOnTopicLen();
- if (autoMessageVersionOnTopicLen && topic.length() > Byte.MAX_VALUE) {
- msg.setVersion(MessageVersion.MESSAGE_VERSION_V2);
- }
- InetSocketAddress bornSocketAddress = (InetSocketAddress) msg.getBornHost();
- if (bornSocketAddress.getAddress() instanceof Inet6Address) {
- msg.setBornHostV6Flag();
- }
- InetSocketAddress storeSocketAddress = (InetSocketAddress) msg.getStoreHost();
- if (storeSocketAddress.getAddress() instanceof Inet6Address) {
- msg.setStoreHostAddressV6Flag();
- }
- //获取本地线程的变量,并更新最大消息大小
- PutMessageThreadLocal putMessageThreadLocal = this.putMessageThreadLocal.get();
- updateMaxMessageSize(putMessageThreadLocal);
- //根据topic和queue的messgae信息组装成一个唯一的topicQueueKey 格式为:topic-queueId
- String topicQueueKey = generateKey(putMessageThreadLocal.getKeyBuilder(), msg);
- long elapsedTimeInLock = 0;
- MappedFile unlockMappedFile = null;
- //TODO 获取上一次操作的mapperFile 也就是最后的一个mapped
- MappedFile mappedFile = this.mappedFileQueue.getLastMappedFile();
- //如果当前没有mappedFile 说明是第一次创建,则从最开始进行位置计算
- long currOffset;
- if (mappedFile == null) {
- currOffset = 0;
- } else {
- //如果有说明当前的消息应该存储在 当前commit文件名的位置加上当前指针已经偏移的位置
- currOffset = mappedFile.getFileFromOffset() + mappedFile.getWrotePosition();
- }
- //计算需要ack的数量以及是否需要做HA通知broker
- int needAckNums = this.defaultMessageStore.getMessageStoreConfig().getInSyncReplicas();
- boolean needHandleHA = needHandleHA(msg);
- if (needHandleHA && this.defaultMessageStore.getBrokerConfig().isEnableControllerMode()) {
- if (this.defaultMessageStore.getHaService().inSyncReplicasNums(currOffset) < this.defaultMessageStore.getMessageStoreConfig().getMinInSyncReplicas()) {
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.IN_SYNC_REPLICAS_NOT_ENOUGH, null));
- }
- if (this.defaultMessageStore.getMessageStoreConfig().isAllAckInSyncStateSet()) {
- // -1 means all ack in SyncStateSet
- needAckNums = MixAll.ALL_ACK_IN_SYNC_STATE_SET;
- }
- } else if (needHandleHA && this.defaultMessageStore.getBrokerConfig().isEnableSlaveActingMaster()) {
- int inSyncReplicas = Math.min(this.defaultMessageStore.getAliveReplicaNumInGroup(),
- this.defaultMessageStore.getHaService().inSyncReplicasNums(currOffset));
- needAckNums = calcNeedAckNums(inSyncReplicas);
- if (needAckNums > inSyncReplicas) {
- // Tell the producer, don't have enough slaves to handle the send request
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.IN_SYNC_REPLICAS_NOT_ENOUGH, null));
- }
- }
- //对当前指定的key进行锁定,当前key说明是一个topic下一个队列
- topicQueueLock.lock(topicQueueKey);
- try {
- boolean needAssignOffset = true;
- if (defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()
- && defaultMessageStore.getMessageStoreConfig().getBrokerRole() != BrokerRole.SLAVE) {
- needAssignOffset = false;
- }
- if (needAssignOffset) {
- defaultMessageStore.assignOffset(msg, getMessageNum(msg));
- }
- PutMessageResult encodeResult = putMessageThreadLocal.getEncoder().encode(msg);
- if (encodeResult != null) {
- return CompletableFuture.completedFuture(encodeResult);
- }
- msg.setEncodedBuff(putMessageThreadLocal.getEncoder().getEncoderBuffer());
- //存储消息的上下文
- PutMessageContext putMessageContext = new PutMessageContext(topicQueueKey);
- //spin或ReentrantLock,具体取决于存储配置
- putMessageLock.lock(); //spin or ReentrantLock ,depending on store config
- try {
- //加锁成功后的时间
- long beginLockTimestamp = this.defaultMessageStore.getSystemClock().now();
- this.beginTimeInLock = beginLockTimestamp;
- // Here settings are stored timestamp, in order to ensure an orderly
- // global
- //设置存储时间为加锁成功后的时间,保证顺序
- if (!defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()) {
- msg.setStoreTimestamp(beginLockTimestamp);
- }
- //如果当前没有mapped或mapped已经满了,则会创建新的mapped
- if (null == mappedFile || mappedFile.isFull()) {
- mappedFile = this.mappedFileQueue.getLastMappedFile(0); // Mark: NewFile may be cause noise
- }
- if (null == mappedFile) {
- log.error("create mapped file1 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, null));
- }
- //追加写入的内容
- result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
- switch (result.getStatus()) {
- case PUT_OK:
- onCommitLogAppend(msg, result, mappedFile);
- break;
- case END_OF_FILE:
- //如果文件空间不足,重新初始化文件并尝试重新写入
- onCommitLogAppend(msg, result, mappedFile);
- unlockMappedFile = mappedFile;
- // Create a new file, re-write the message
- mappedFile = this.mappedFileQueue.getLastMappedFile(0);
- if (null == mappedFile) {
- // XXX: warn and notify me
- log.error("create mapped file2 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, result));
- }
- result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
- if (AppendMessageStatus.PUT_OK.equals(result.getStatus())) {
- onCommitLogAppend(msg, result, mappedFile);
- }
- break;
- case MESSAGE_SIZE_EXCEEDED:
- case PROPERTIES_SIZE_EXCEEDED:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, result));
- case UNKNOWN_ERROR:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
- default:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
- }
- //更新使用的时间
- elapsedTimeInLock = this.defaultMessageStore.getSystemClock().now() - beginLockTimestamp;
- beginTimeInLock = 0;
- } finally {
- //释放锁
- putMessageLock.unlock();
- }
- } finally {
- //释放锁
- topicQueueLock.unlock(topicQueueKey);
- }
- if (elapsedTimeInLock > 500) {
- log.warn("[NOTIFYME]putMessage in lock cost time(ms)={}, bodyLength={} AppendMessageResult={}", elapsedTimeInLock, msg.getBody().length, result);
- }
- if (null != unlockMappedFile && this.defaultMessageStore.getMessageStoreConfig().isWarmMapedFileEnable()) {
- this.defaultMessageStore.unlockMappedFile(unlockMappedFile);
- }
- PutMessageResult putMessageResult = new PutMessageResult(PutMessageStatus.PUT_OK, result);
- // Statistics
- //存储缓存数据副本的更新
- storeStatsService.getSinglePutMessageTopicTimesTotal(msg.getTopic()).add(result.getMsgNum());
- storeStatsService.getSinglePutMessageTopicSizeTotal(topic).add(result.getWroteBytes());
- //提交刷盘请求,提交副本请求
- return handleDiskFlushAndHA(putMessageResult, msg, needAckNums, needHandleHA);
- }
先设置一些基本数据,如存储时间,brokerHost,storeHost,获取本地变量LocalThread,更新最大的消息存储大小;
根据topic和queue的messgae信息组装成一个唯一的topicQueueKey 格式为:topic-queueId;获取上一次操作的mapperFile 也就是最后的一个mapped,因为消息的写入是append追加的,消息的持久化都是集中存储的;
如果没有获取到使用过的mappedFileChannel,说明这条消息可能是第一条,那么就创建一个fileChannel通道,如果没有消息那么消费的初始点位肯定是0,如果获取到了fileChannel,其实对应的commitlog文件的名称就是这个文件最开始的消费点位,那么当前消息对应的消费点位其实就是获取到的mappedFile的文件名称 + 当前消息所处的offSet的位置 就是这个文件存储的位置;
校验HA和ack;
先对 topicQueueKey进行锁定,这个key生成的规则是topic下的一个queue,计算这次消费的消费点位;
定义存储消息的上下文 PutMessageContext:
- public class PutMessageContext {
- private String topicQueueTableKey;//锁定的key
- private long[] phyPos;
- private int batchSize;//批量数据的大小
- public PutMessageContext(String topicQueueTableKey) {
- this.topicQueueTableKey = topicQueueTableKey;
- }
- }
对putMessageLock进行锁定:这里锁定有两种方式:自旋锁和重入锁
- /**
- * Spin lock Implementation to put message, suggest using this with low race conditions
- */
- public class PutMessageSpinLock implements PutMessageLock {
- //true: Can lock, false : in lock.
- private AtomicBoolean putMessageSpinLock = new AtomicBoolean(true);
- @Override
- public void lock() {
- boolean flag;
- do {
- flag = this.putMessageSpinLock.compareAndSet(true, false);
- }
- while (!flag);
- }
- @Override
- public void unlock() {
- this.putMessageSpinLock.compareAndSet(false, true);
- }
- }
- /**
- * Exclusive lock implementation to put message
- */
- public class PutMessageReentrantLock implements PutMessageLock {
- private ReentrantLock putMessageNormalLock = new ReentrantLock(); // NonfairSync
- @Override
- public void lock() {
- putMessageNormalLock.lock();
- }
- @Override
- public void unlock() {
- putMessageNormalLock.unlock();
- }
- }
在rocket4.X之后,应该都是默认true,异步刷盘建议使用自旋锁,同步刷盘建议使用重入锁,调整Broker配置项`useReentrantLockWhenPutMessage`,默认为false;异步刷盘建议开启`TransientStorePoolEnable`;建议关闭transferMsgByHeap,提高拉消息效率;同步刷盘建议适当增大`sendMessageThreadPoolNums`,具体配置需要经过压测。
设置成功加锁后的时间,保证了操作的顺序。上一步获取的mappedFile如果没有获取到或者已经获取满了,则需要创建新的mappedFile;
- /**
- * TODO 预处理创建新的commitLog
- * @return
- */
- public MappedFile getLastMappedFile(final long startOffset, boolean needCreate) {
- long createOffset = -1;
- /**
- * 获取最新的mappedFile
- */
- MappedFile mappedFileLast = getLastMappedFile();
- //如果获取不到,则说明是第一次创建文件
- if (mappedFileLast == null) {
- createOffset = startOffset - (startOffset % this.mappedFileSize);
- }
- /**
- * 如果文件写满了,则需要计算下一个文件的初始量 其实就是上一个文件最后的偏移量的下一个
- */
- if (mappedFileLast != null && mappedFileLast.isFull()) {
- createOffset = mappedFileLast.getFileFromOffset() + this.mappedFileSize;
- }
- //创建新的commitLog
- if (createOffset != -1 && needCreate) {
- return tryCreateMappedFile(createOffset);
- }
- return mappedFileLast;
- }
追加需要写入的数据 result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
- /**
- * TODO append 统一为fileChannel 对文件的写入 提供了单消息和批量消息的写入
- */
- public AppendMessageResult appendMessage(final ByteBuffer byteBufferMsg, final CompactionAppendMsgCallback cb) {
- assert byteBufferMsg != null;
- assert cb != null;
- //获取当前写入的位置
- int currentPos = WROTE_POSITION_UPDATER.get(this);
- //当前写入的位置需要比文件最大的位数要小
- if (currentPos < this.fileSize) {
- //根据appendMessageBuffer选择是否写入writeBuffer还是mapperByteBuffer 异步刷盘应该写入writeBuffer 再定时写到mapperBuffer
- ByteBuffer byteBuffer = appendMessageBuffer().slice();
- //修改写入位置
- byteBuffer.position(currentPos);
- AppendMessageResult result = cb.doAppend(byteBuffer, this.fileFromOffset, this.fileSize - currentPos, byteBufferMsg);
- //AtomicInteger累计更新写入的位置 WROTE_POSITION_UPDATER其实就是当前已经存储文件的字节
- WROTE_POSITION_UPDATER.addAndGet(this, result.getWroteBytes());
- //更新最后一次写入时间
- this.storeTimestamp = result.getStoreTimestamp();
- return result;
- }
- log.error("MappedFile.appendMessage return null, wrotePosition: {} fileSize: {}", currentPos, this.fileSize);
- return new AppendMessageResult(AppendMessageStatus.UNKNOWN_ERROR);
- }
写入处理后,根据响应状态处理,store提供了 onCommitLogAppend的提交后追加处理,如果当前写入失败是因为写入的长度不满足,则尝试重新创建文件并写入
- switch (result.getStatus()) {
- case PUT_OK:
- onCommitLogAppend(msg, result, mappedFile);
- break;
- case END_OF_FILE:
- //如果文件空间不足,重新初始化文件并尝试重新写入
- onCommitLogAppend(msg, result, mappedFile);
- unlockMappedFile = mappedFile;
- // Create a new file, re-write the message
- mappedFile = this.mappedFileQueue.getLastMappedFile(0);
- if (null == mappedFile) {
- // XXX: warn and notify me
- log.error("create mapped file2 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, result));
- }
- result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
- if (AppendMessageStatus.PUT_OK.equals(result.getStatus())) {
- onCommitLogAppend(msg, result, mappedFile);
- }
- break;
- case MESSAGE_SIZE_EXCEEDED:
- case PROPERTIES_SIZE_EXCEEDED:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, result));
- case UNKNOWN_ERROR:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
- default:
- beginTimeInLock = 0;
- return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
- }
处理完成后,释放锁,缓存数据副本更新,提交刷盘并提交HA
- /**
- * 通知刷盘并HA的核心代码
- * @return
- */
- private CompletableFuture<PutMessageResult> handleDiskFlushAndHA(PutMessageResult putMessageResult,
- MessageExt messageExt, int needAckNums, boolean needHandleHA) {
- /**
- * 同步刷盘或异步刷盘的任务
- */
- CompletableFuture<PutMessageStatus> flushResultFuture = handleDiskFlush(putMessageResult.getAppendMessageResult(), messageExt);
- CompletableFuture<PutMessageStatus> replicaResultFuture;
- if (!needHandleHA) {
- replicaResultFuture = CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
- } else {
- replicaResultFuture = handleHA(putMessageResult.getAppendMessageResult(), putMessageResult, needAckNums);
- }
- return flushResultFuture.thenCombine(replicaResultFuture, (flushStatus, replicaStatus) -> {
- if (flushStatus != PutMessageStatus.PUT_OK) {
- putMessageResult.setPutMessageStatus(flushStatus);
- }
- if (replicaStatus != PutMessageStatus.PUT_OK) {
- putMessageResult.setPutMessageStatus(replicaStatus);
- }
- return putMessageResult;
- });
- }
- @Override
- public CompletableFuture<PutMessageStatus> handleDiskFlush(AppendMessageResult result, MessageExt messageExt) {
- // Synchronization flush
- //同步刷盘
- if (FlushDiskType.SYNC_FLUSH == CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushDiskType()) {
- final GroupCommitService service = (GroupCommitService) this.flushCommitLogService;
- if (messageExt.isWaitStoreMsgOK()) {
- GroupCommitRequest request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes(), CommitLog.this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout());
- //将刷盘request:GroupCommitRequest放入commitRequests
- flushDiskWatcher.add(request);
- service.putRequest(request);
- return request.future();
- } else {
- //唤醒线程去消费
- service.wakeup();
- return CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
- }
- }
- // Asynchronous flush
- //异步,唤醒线程就返回
- else {
- if (!CommitLog.this.defaultMessageStore.isTransientStorePoolEnable()) {
- flushCommitLogService.wakeup();
- } else {
- commitRealTimeService.wakeup();
- }
- return CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
- }
- }
处理完成后,再进行onComplete对后置HookAfter钩子函数的回调
消息存储-从消费者到磁盘
消费者拉取
consumer在startUp时会启动一个线程池异步去指定拉取的动作,pullRequest,client端的流程不在本篇具体描述,流程可以参考之前的文章,如何保证不重复消费。本篇主要考虑在 broker中processoe中如何根据store做消费进度持久化和拉取的。
broker核心处理拉取方法:
- /**
- * TODO broker processor拉取对应消息的核心代码
- * 同样的写法 上层做了异步的CompletableFuture,真正拉取的地方在 @see DefaultMessageStore#getMessage
- */
- messageStore.getMessageAsync(group, topic, queueId, requestHeader.getQueueOffset(),
- requestHeader.getMaxMsgNums(), messageFilter)
- /**
- * TODO broker根据持久化存储拉取文件的处理
- * @return
- */
- @Override
- public GetMessageResult getMessage(final String group, final String topic, final int queueId, final long offset,
- final int maxMsgNums, final int maxTotalMsgSize, final MessageFilter messageFilter) {
- //判断当前状态
- if (this.shutdown) {
- LOGGER.warn("message store has shutdown, so getMessage is forbidden");
- return null;
- }
- if (!this.runningFlags.isReadable()) {
- LOGGER.warn("message store is not readable, so getMessage is forbidden " + this.runningFlags.getFlagBits());
- return null;
- }
- Optional<TopicConfig> topicConfig = getTopicConfig(topic);
- CleanupPolicy policy = CleanupPolicyUtils.getDeletePolicy(topicConfig);
- //check request topic flag
- //操作标记是过期清理,则通过compactionStore.getMessage获取消息
- if (Objects.equals(policy, CleanupPolicy.COMPACTION) && messageStoreConfig.isEnableCompaction()) {
- return compactionStore.getMessage(group, topic, queueId, offset, maxMsgNums, maxTotalMsgSize);
- } // else skip
- long beginTime = this.getSystemClock().now();
- GetMessageStatus status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
- long nextBeginOffset = offset;
- long minOffset = 0;
- long maxOffset = 0;
- GetMessageResult getResult = new GetMessageResult();
- //获取当前最大消费进度
- final long maxOffsetPy = this.commitLog.getMaxOffset();
- //TODO 获取消费队列信息
- ConsumeQueueInterface consumeQueue = findConsumeQueue(topic, queueId);
- if (consumeQueue != null) {
- minOffset = consumeQueue.getMinOffsetInQueue();
- maxOffset = consumeQueue.getMaxOffsetInQueue();
- if (maxOffset == 0) {
- //offSet一直没有东西或者没有被消费过,那么将下一个初始的消费设置成0
- status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
- nextBeginOffset = nextOffsetCorrection(offset, 0);
- } else if (offset < minOffset) {
- //如果当前消费点位比最小的还小,那么它就是最小的
- status = GetMessageStatus.OFFSET_TOO_SMALL;
- nextBeginOffset = nextOffsetCorrection(offset, minOffset);
- } else if (offset == maxOffset) {
- //如果当前消费点位跟最大的相同
- status = GetMessageStatus.OFFSET_OVERFLOW_ONE;
- nextBeginOffset = nextOffsetCorrection(offset, offset);
- } else if (offset > maxOffset) {
- //如果当前消费点位已经比最大的还大了
- status = GetMessageStatus.OFFSET_OVERFLOW_BADLY;
- nextBeginOffset = nextOffsetCorrection(offset, maxOffset);
- } else {
- //当前消费点位在最大和最小的之间
- //一次拉取过滤的最大消息数量
- final int maxFilterMessageSize = Math.max(16000, maxMsgNums * consumeQueue.getUnitSize());
- final boolean diskFallRecorded = this.messageStoreConfig.isDiskFallRecorded();
- //设置一次拉取最大的消息数量
- long maxPullSize = Math.max(maxTotalMsgSize, 100);
- if (maxPullSize > MAX_PULL_MSG_SIZE) {
- LOGGER.warn("The max pull size is too large maxPullSize={} topic={} queueId={}", maxPullSize, topic, queueId);
- maxPullSize = MAX_PULL_MSG_SIZE;
- }
- status = GetMessageStatus.NO_MATCHED_MESSAGE;
- long maxPhyOffsetPulling = 0;
- int cqFileNum = 0;
- while (getResult.getBufferTotalSize() <= 0
- && nextBeginOffset < maxOffset
- && cqFileNum++ < this.messageStoreConfig.getTravelCqFileNumWhenGetMessage()) {
- //根据当前指定的点位进行过滤 nextBeginOffset就是这次需要从哪里开始拉
- ReferredIterator<CqUnit> bufferConsumeQueue = consumeQueue.iterateFrom(nextBeginOffset);
- if (bufferConsumeQueue == null) {
- status = GetMessageStatus.OFFSET_FOUND_NULL;
- nextBeginOffset = nextOffsetCorrection(nextBeginOffset, this.consumeQueueStore.rollNextFile(consumeQueue, nextBeginOffset));
- LOGGER.warn("consumer request topic: " + topic + "offset: " + offset + " minOffset: " + minOffset + " maxOffset: "
- + maxOffset + ", but access logic queue failed. Correct nextBeginOffset to " + nextBeginOffset);
- break;
- }
- try {
- long nextPhyFileStartOffset = Long.MIN_VALUE;
- /**
- * 当前拉取的点位小于最大的消费点位时,进行拉取
- */
- while (bufferConsumeQueue.hasNext()
- && nextBeginOffset < maxOffset) {
- CqUnit cqUnit = bufferConsumeQueue.next();
- //计算出消息在commitlog中存储的位置
- long offsetPy = cqUnit.getPos();
- //计算出消息在commitlog中存储的大小
- int sizePy = cqUnit.getSize();
- //按照偏移量估算出提交的内存
- boolean isInMem = estimateInMemByCommitOffset(offsetPy, maxOffsetPy);
- //如果当前大小已经超过指定过滤的大小,则不做处理 默认大小是16000
- if ((cqUnit.getQueueOffset() - offset) * consumeQueue.getUnitSize() > maxFilterMessageSize) {
- break;
- }
- //判断是否已经满了
- if (this.isTheBatchFull(sizePy, cqUnit.getBatchNum(), maxMsgNums, maxPullSize, getResult.getBufferTotalSize(), getResult.getMessageCount(), isInMem)) {
- break;
- }
- if (getResult.getBufferTotalSize() >= maxPullSize) {
- break;
- }
- maxPhyOffsetPulling = offsetPy;
- //Be careful, here should before the isTheBatchFull
- nextBeginOffset = cqUnit.getQueueOffset() + cqUnit.getBatchNum();
- if (nextPhyFileStartOffset != Long.MIN_VALUE) {
- if (offsetPy < nextPhyFileStartOffset) {
- continue;
- }
- }
- /**
- * 根据过滤器过滤消息
- */
- if (messageFilter != null
- && !messageFilter.isMatchedByConsumeQueue(cqUnit.getValidTagsCodeAsLong(), cqUnit.getCqExtUnit())) {
- if (getResult.getBufferTotalSize() == 0) {
- status = GetMessageStatus.NO_MATCHED_MESSAGE;
- }
- continue;
- }
- /**
- * 根据消费点位拉取到对应的消息流
- */
- SelectMappedBufferResult selectResult = this.commitLog.getMessage(offsetPy, sizePy);
- if (null == selectResult) {
- if (getResult.getBufferTotalSize() == 0) {
- status = GetMessageStatus.MESSAGE_WAS_REMOVING;
- }
- nextPhyFileStartOffset = this.commitLog.rollNextFile(offsetPy);
- continue;
- }
- //消息过滤
- if (messageFilter != null
- && !messageFilter.isMatchedByCommitLog(selectResult.getByteBuffer().slice(), null)) {
- if (getResult.getBufferTotalSize() == 0) {
- status = GetMessageStatus.NO_MATCHED_MESSAGE;
- }
- // release...
- selectResult.release();
- continue;
- }
- //填充拉取到的消息
- this.storeStatsService.getGetMessageTransferredMsgCount().add(cqUnit.getBatchNum());
- getResult.addMessage(selectResult, cqUnit.getQueueOffset(), cqUnit.getBatchNum());
- status = GetMessageStatus.FOUND;
- nextPhyFileStartOffset = Long.MIN_VALUE;
- }
- } finally {
- bufferConsumeQueue.release();
- }
- }
- if (diskFallRecorded) {
- long fallBehind = maxOffsetPy - maxPhyOffsetPulling;
- brokerStatsManager.recordDiskFallBehindSize(group, topic, queueId, fallBehind);
- }
- long diff = maxOffsetPy - maxPhyOffsetPulling;
- long memory = (long) (StoreUtil.TOTAL_PHYSICAL_MEMORY_SIZE
- * (this.messageStoreConfig.getAccessMessageInMemoryMaxRatio() / 100.0));
- getResult.setSuggestPullingFromSlave(diff > memory);
- }
- } else {
- status = GetMessageStatus.NO_MATCHED_LOGIC_QUEUE;
- nextBeginOffset = nextOffsetCorrection(offset, 0);
- }
- //跟新本地成员变量统计信息
- if (GetMessageStatus.FOUND == status) {
- this.storeStatsService.getGetMessageTimesTotalFound().add(1);
- } else {
- this.storeStatsService.getGetMessageTimesTotalMiss().add(1);
- }
- long elapsedTime = this.getSystemClock().now() - beginTime;
- this.storeStatsService.setGetMessageEntireTimeMax(elapsedTime);
- /**
- * 如果这次没有拉到数据,则把对应的消费点位放进来返回
- */
- // lazy init no data found.
- if (getResult == null) {
- getResult = new GetMessageResult(0);
- }
- getResult.setStatus(status);
- getResult.setNextBeginOffset(nextBeginOffset);
- getResult.setMaxOffset(maxOffset);
- getResult.setMinOffset(minOffset);
- return getResult;
- }
判断当前服务状态;
核心处理:获取当前消费的最大进度,最大消费进度就是当前消费的位置,根据当前消费节点和当前持有文件初始节点计算;
获取消费队列信息;
计算当前队列的消费位置最大最小位置,如果offset时0说明offSet一直没有东西或者没有被消费过,那么将下一个初始的消费设置成0;如果当前点位比最小的点位还小,那么它就是最小的点位;如果它刚好等于最大的点位,说明它消费超过了一个,如果它比最大消费点位还大,说明它的消费是错误的;如果它刚好在最大最小中间,那么要知道我这次最多能过滤多少消息, Math.max(16000, maxMsgNums * consumeQueue.getUnitSize()); 我也要知道我最多能拉取多少消息 Math.max(maxTotalMsgSize, 100); 这时根据要拉取的点位遍历拉取:
- public SelectMappedBufferResult getMessage(final long offset, final int size) {
- int mappedFileSize = this.defaultMessageStore.getMessageStoreConfig().getMappedFileSizeCommitLog();
- MappedFile mappedFile = this.mappedFileQueue.findMappedFileByOffset(offset, offset == 0);
- if (mappedFile != null) {
- //获取到当前文件对应的位置,如果它小于1024 * 1024 * 1024 则就会在文件中顺序分配
- int pos = (int) (offset % mappedFileSize);
- return mappedFile.selectMappedBuffer(pos, size);
- }
- return null;
- }
消费者消费
消费完成后,核心的处理逻辑在 ConsumeMessageConcurrentlyService.this.processConsumeResult中实现:
- /**
- * TODO 消费者完成后的处理
- * @param status
- * @param context
- * @param consumeRequest
- */
- public void processConsumeResult(
- final ConsumeConcurrentlyStatus status,
- final ConsumeConcurrentlyContext context,
- final ConsumeRequest consumeRequest
- ) {
- int ackIndex = context.getAckIndex();
- if (consumeRequest.getMsgs().isEmpty())
- return;
- /**
- * 消费成功或失败的处理 默认ackIndex最大为Integer.max 这里需要计算一条消息或一批消息处理的偏移量
- * 如果设置的ackIndex大于当前处理消息的长度,则ackIndex应该是size -1
- */
- switch (status) {
- case CONSUME_SUCCESS:
- if (ackIndex >= consumeRequest.getMsgs().size()) {
- ackIndex = consumeRequest.getMsgs().size() - 1;
- }
- int ok = ackIndex + 1;
- int failed = consumeRequest.getMsgs().size() - ok;
- //维护消息处理成功或失败的量
- this.getConsumerStatsManager().incConsumeOKTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), ok);
- this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), failed);
- break;
- case RECONSUME_LATER:
- ackIndex = -1;
- this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(),
- consumeRequest.getMsgs().size());
- break;
- default:
- break;
- }
- /**
- * 这里是针对消息重试的处理 广播模式是不需要消费重试的 所以不做任何处理
- * 集群模式处理有一点不同的是:如果上文返回的是处理失败,那么ackIndex一定为-1 这时你重试的消息就是这个request下所有的消息,因为从0的下标开始到结束都需要重试
- * 如果是批量消费,其实ackIndex设置的就是需要做重试的消息下标,那么上文 ackIndex = consumeRequest.getMsgs().size() - 1; 说明ackIndex是不会大于msgs最大数量的下标位置
- */
- switch (this.defaultMQPushConsumer.getMessageModel()) {
- case BROADCASTING:
- for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) {
- MessageExt msg = consumeRequest.getMsgs().get(i);
- log.warn("BROADCASTING, the message consume failed, drop it, {}", msg.toString());
- }
- break;
- case CLUSTERING:
- List<MessageExt> msgBackFailed = new ArrayList<>(consumeRequest.getMsgs().size());
- for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) {
- MessageExt msg = consumeRequest.getMsgs().get(i);
- // Maybe message is expired and cleaned, just ignore it.
- if (!consumeRequest.getProcessQueue().containsMessage(msg)) {
- log.info("Message is not found in its process queue; skip send-back-procedure, topic={}, "
- + "brokerName={}, queueId={}, queueOffset={}", msg.getTopic(), msg.getBrokerName(),
- msg.getQueueId(), msg.getQueueOffset());
- continue;
- }
- /**
- * 针对需要重试的消息,将消息发送sendMessageBack 并且将消息设置重试次数
- */
- boolean result = this.sendMessageBack(msg, context);
- if (!result) {
- msg.setReconsumeTimes(msg.getReconsumeTimes() + 1);
- msgBackFailed.add(msg);
- }
- }
- /**
- * 将所有重试的消息进行回退,然后对成功处理的消息做进一步提交
- */
- if (!msgBackFailed.isEmpty()) {
- consumeRequest.getMsgs().removeAll(msgBackFailed);
- this.submitConsumeRequestLater(msgBackFailed, consumeRequest.getProcessQueue(), consumeRequest.getMessageQueue());
- }
- break;
- default:
- break;
- }
- /**
- * 计算处理的offSet偏移量 这里consumeRequest已经是成功处理的消息集合
- */
- long offset = consumeRequest.getProcessQueue().removeMessage(consumeRequest.getMsgs());
- if (offset >= 0 && !consumeRequest.getProcessQueue().isDropped()) {
- //更新消费节点 广播是通过本地处理 集群是通过更新broker消费节点
- this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true);
- }
- }
如果消费完成,通过messageListener回调,封装了一层返回状态:如果消费成功,则需要处理ackIndex的数据。如果是单条消费,那么ack最多只有一个,如果是多条消费,那么ack的数量应该是msg.size - 1最大,那么先在本地变量保存一下当前处理的数量。
然后是核心处理的能力:如果是广播消息,因为广播消息是不会重试的,所以无法再做任何处理,打个日志完事了;如果是集群消息,并且ackIndex返回了-1,那么这个消息一定是失败了,那么就需要走sendBack,通知broker将消息扔到重试队列里去,然后将消息的重试次数+1;
对于已经成功的消息,我们需要更新掉它的偏移量,通过updateOffSet进行更新,同样区分更新方式,localFile其实更新的是本地的广播消费进度,remote是集群更新进度,集群的消费进度保存再broker中,但是其实这里都是更新了本地的offSetTable,其实在broker中会根据后续的动作会将offSet同步到broker中进行记录,这样新的消费实例就可以从broker保存的offset进行消费:
- /** TODO 消费同步模式 重要
- * 集群消费更新节点 其实可以看出在这里不管广播还是集群都是存储在了offsetTable中,其实会在后续推送到broker进行保存的
- * 这里有个误区,我们知道集群模式 一个queue会对应到一个消费者进行消费 一个消费者可以绑定多个队列进行pull 如果这里不存在rebalance时,这个消费者不会变化,它延后在注册心跳同步offSet是完全没有问题的
- * 但是如果这里触发了rebalance,这个消息可能在消费没来得及相应的情况下 进行了消费重排,这时这个队列在这个消费者下可能就是isDrop,但是新的消费者拉取消息时不会从当前的点位消费,而是从上一次成功提交
- * 的点位进行消费!
- * 当前保存的点位信息可能在同步或拉取时推送给broker
- * @see RemoteBrokerOffsetStore#persistAll(Set)
- * 在拉取时也会将当前的消费点位传入broker
- * @see org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage(PullRequest)
- */
- @Override
- public void updateOffset(MessageQueue mq, long offset, boolean increaseOnly) {
- if (mq != null) {
- AtomicLong offsetOld = this.offsetTable.get(mq);
- if (null == offsetOld) {
- offsetOld = this.offsetTable.putIfAbsent(mq, new AtomicLong(offset));
- }
- if (null != offsetOld) {
- if (increaseOnly) {
- MixAll.compareAndIncreaseOnly(offsetOld, offset);
- } else {
- offsetOld.set(offset);
- }
- }
- }
- }
它会根据另一个异步线程池定时将目前最新的 offset同步给broker。
index索引持久化
在消息经过持久化进入commitlog后,相应的store也会对持久化的消息进行索引保存:在 ReputMessageService中:
- public void run() {
- DefaultMessageStore.LOGGER.info(this.getServiceName() + " service started");
- while (!this.isStopped()) {
- try {
- Thread.sleep(1);
- this.doReput();
- } catch (Exception e) {
- DefaultMessageStore.LOGGER.warn(this.getServiceName() + " service has exception. ", e);
- }
- }
- DefaultMessageStore.LOGGER.info(this.getServiceName() + " service end");
- }
其中核心的操作就是doReput,它就是对index文件创建刷盘并给commitlog的消息创建索引的过程:
- /**
- * 自旋线程执行的方法
- */
- private void doReput() {
- if (this.reputFromOffset < DefaultMessageStore.this.commitLog.getMinOffset()) {
- LOGGER.warn("The reputFromOffset={} is smaller than minPyOffset={}, this usually indicate that the dispatch behind too much and the commitlog has expired.",
- this.reputFromOffset, DefaultMessageStore.this.commitLog.getMinOffset());
- this.reputFromOffset = DefaultMessageStore.this.commitLog.getMinOffset();
- }
- for (boolean doNext = true; this.isCommitLogAvailable() && doNext; ) {
- //从commitlog中获取reput的offset对应的消息列表
- SelectMappedBufferResult result = DefaultMessageStore.this.commitLog.getData(reputFromOffset);
- if (result == null) {
- break;
- }
- try {
- this.reputFromOffset = result.getStartOffset();
- //将对应的每条消息都封装成dispatchRequest
- for (int readSize = 0; readSize < result.getSize() && reputFromOffset < DefaultMessageStore.this.getConfirmOffset() && doNext; ) {
- DispatchRequest dispatchRequest =
- DefaultMessageStore.this.commitLog.checkMessageAndReturnSize(result.getByteBuffer(), false, false, false);
- int size = dispatchRequest.getBufferSize() == -1 ? dispatchRequest.getMsgSize() : dispatchRequest.getBufferSize();
- if (reputFromOffset + size > DefaultMessageStore.this.getConfirmOffset()) {
- doNext = false;
- break;
- }
- if (dispatchRequest.isSuccess()) {
- if (size > 0) {
- //如果dispatchRequest校验成功,消息检查成功,则执行doDispatch
- DefaultMessageStore.this.doDispatch(dispatchRequest);
- if (DefaultMessageStore.this.brokerConfig.isLongPollingEnable()
- && DefaultMessageStore.this.messageArrivingListener != null) {
- DefaultMessageStore.this.messageArrivingListener.arriving(dispatchRequest.getTopic(),
- dispatchRequest.getQueueId(), dispatchRequest.getConsumeQueueOffset() + 1,
- dispatchRequest.getTagsCode(), dispatchRequest.getStoreTimestamp(),
- dispatchRequest.getBitMap(), dispatchRequest.getPropertiesMap());
- notifyMessageArrive4MultiQueue(dispatchRequest);
- }
- this.reputFromOffset += size;
- readSize += size;
- if (!DefaultMessageStore.this.getMessageStoreConfig().isDuplicationEnable() &&
- DefaultMessageStore.this.getMessageStoreConfig().getBrokerRole() == BrokerRole.SLAVE) {
- DefaultMessageStore.this.storeStatsService
- .getSinglePutMessageTopicTimesTotal(dispatchRequest.getTopic()).add(dispatchRequest.getBatchSize());
- DefaultMessageStore.this.storeStatsService
- .getSinglePutMessageTopicSizeTotal(dispatchRequest.getTopic())
- .add(dispatchRequest.getMsgSize());
- }
- } else if (size == 0) {
- this.reputFromOffset = DefaultMessageStore.this.commitLog.rollNextFile(this.reputFromOffset);
- readSize = result.getSize();
- }
- } else {
- if (size > 0) {
- LOGGER.error("[BUG]read total count not equals msg total size. reputFromOffset={}", reputFromOffset);
- this.reputFromOffset += size;
- } else {
- doNext = false;
- // If user open the dledger pattern or the broker is master node,
- // it will not ignore the exception and fix the reputFromOffset variable
- if (DefaultMessageStore.this.getMessageStoreConfig().isEnableDLegerCommitLog() ||
- DefaultMessageStore.this.brokerConfig.getBrokerId() == MixAll.MASTER_ID) {
- LOGGER.error("[BUG]dispatch message to consume queue error, COMMITLOG OFFSET: {}",
- this.reputFromOffset);
- this.reputFromOffset += result.getSize() - readSize;
- }
- }
- }
- }
- } finally {
- result.release();
- }
- }
- }
它根据reputOffset向commitlog拉取对应的消息列表,然后将这批消息进行批量构建索引,会将符合条件的所有的消息每个生成一个 DispatchRequest:
核心的动作就是:
- /**
- * TODO 构建index索引并根据commitlog持久化消息处理核心代码
- */
- class CommitLogDispatcherBuildIndex implements CommitLogDispatcher {
- @Override
- public void dispatch(DispatchRequest request) {
- if (DefaultMessageStore.this.messageStoreConfig.isMessageIndexEnable()) {
- //构建index索引
- DefaultMessageStore.this.indexService.buildIndex(request);
- }
- }
- }
首先,获取对应的indexFile文件
- public void buildIndex(DispatchRequest req) {
- //尝试获取索引文件
- IndexFile indexFile = retryGetAndCreateIndexFile();
- if (indexFile != null) {
- long endPhyOffset = indexFile.getEndPhyOffset();
- DispatchRequest msg = req;
- String topic = msg.getTopic();
- String keys = msg.getKeys();
- //索引是根据commitlog的offset构建的,如果当前的消息小于当前已经构建的最大点位,则认为它是重复的消息
- if (msg.getCommitLogOffset() < endPhyOffset) {
- return;
- }
- final int tranType = MessageSysFlag.getTransactionValue(msg.getSysFlag());
- switch (tranType) {
- case MessageSysFlag.TRANSACTION_NOT_TYPE:
- case MessageSysFlag.TRANSACTION_PREPARED_TYPE:
- case MessageSysFlag.TRANSACTION_COMMIT_TYPE:
- break;
- case MessageSysFlag.TRANSACTION_ROLLBACK_TYPE:
- return;
- }
- /**
- * 生成索引
- */
- if (req.getUniqKey() != null) {
- indexFile = putKey(indexFile, msg, buildKey(topic, req.getUniqKey()));
- if (indexFile == null) {
- LOGGER.error("putKey error commitlog {} uniqkey {}", req.getCommitLogOffset(), req.getUniqKey());
- return;
- }
- }
- if (keys != null && keys.length() > 0) {
- String[] keyset = keys.split(MessageConst.KEY_SEPARATOR);
- for (int i = 0; i < keyset.length; i++) {
- String key = keyset[i];
- if (key.length() > 0) {
- indexFile = putKey(indexFile, msg, buildKey(topic, key));
- if (indexFile == null) {
- LOGGER.error("putKey error commitlog {} uniqkey {}", req.getCommitLogOffset(), req.getUniqKey());
- return;
- }
- }
- }
- }
- } else {
- LOGGER.error("build index error, stop building index");
- }
- }
更新索引文件后,会对每次最后一次更新的 时间戳进行index下的文件重命名。
根据key进行消息查找,通过index文件:
- /**
- * TODO 根据索引key查找消息的核心代码
- * @return
- */
- @Override
- public QueryMessageResult queryMessage(String topic, String key, int maxNum, long begin, long end) {
- QueryMessageResult queryMessageResult = new QueryMessageResult();
- long lastQueryMsgTime = end;
- for (int i = 0; i < 3; i++) {
- //获取 IndexFile 索引文件中记录的消息在 CommitLog 文件物理偏移地址
- QueryOffsetResult queryOffsetResult = this.indexService.queryOffset(topic, key, maxNum, begin, lastQueryMsgTime);
- if (queryOffsetResult.getPhyOffsets().isEmpty()) {
- break;
- }
- //排序 根据消费进度
- Collections.sort(queryOffsetResult.getPhyOffsets());
- queryMessageResult.setIndexLastUpdatePhyoffset(queryOffsetResult.getIndexLastUpdatePhyoffset());
- queryMessageResult.setIndexLastUpdateTimestamp(queryOffsetResult.getIndexLastUpdateTimestamp());
- for (int m = 0; m < queryOffsetResult.getPhyOffsets().size(); m++) {
- long offset = queryOffsetResult.getPhyOffsets().get(m);
- try {
- MessageExt msg = this.lookMessageByOffset(offset);
- if (0 == m) {
- lastQueryMsgTime = msg.getStoreTimestamp();
- }
- //根据消费点位在commitlog中查找
- SelectMappedBufferResult result = this.commitLog.getData(offset, false);
- if (result != null) {
- int size = result.getByteBuffer().getInt(0);
- result.getByteBuffer().limit(size);
- result.setSize(size);
- queryMessageResult.addMessage(result);
- }
- } catch (Exception e) {
- LOGGER.error("queryMessage exception", e);
- }
- }
- if (queryMessageResult.getBufferTotalSize() > 0) {
- break;
- }
- if (lastQueryMsgTime < begin) {
- break;
- }
- }
- return queryMessageResult;
- }
关于零拷贝
了解零拷贝之前,我们先来了解一下常规的一次IO读取会经历哪些事情
由于JVM本身不能操作内核,所以jvm进行一次IO时,会有一次内核的切换,DMA拷贝将内容拷贝到读取缓冲区中,再将内核切换为用户进程,再把内容拷贝到应用缓冲区中;
发送同理,会先将内容通过CPU拷贝到套接字缓冲区中,再通过内核将套接字缓冲的内容通过DMA发送到网卡。这一共需要经历4次拷贝。
mmap的零拷贝,采用的是将磁盘的内容直接拷贝到内核缓冲区,内核缓冲区可以看做一个虚拟内存,所以是3次拷贝。
sendfile的零拷贝,采用的是将内核缓冲区直接拷贝到网卡去,所以是两次拷贝。(rocket采用的是mmap,kfaka采用的是sendfile)
使用mmap+write方式(rocket)
优点:即使频繁调用,使用小文件块传输,效率也很高
缺点:不能很好的利用DMA方式,会比sendfile多消耗CPU资源,内存安全性控制复杂,需要避免JVM Crash问题
使用sendfile方式(kfaka)
优点:可以利用DMA方式,消耗CPU资源少,大块文件传输效率高,无内存安全新问题
缺点:小块文件效率低于mmap方式,只能是BIO方式传输,不能使用NIO
看一个实例:
- ServerSocket serverSocket = new ServerSocket(8999);
- while (true){
- Socket socket = serverSocket.accept();
- DataInputStream dataInputStream = new DataInputStream(socket.getInputStream());
- AtomicInteger integer = new AtomicInteger(0);
- try {
- byte[] buffer = new byte[1024];
- while (true){
- int read = dataInputStream.read(buffer, 0, buffer.length);
- integer.addAndGet(read);
- if (read == -1){
- System.out.println("接收:" + integer.get());
- integer = null;
- break;
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- Socket socket = new Socket("localhost", 8999);
- String fileName = "E://workSpace//store.log";//37.8 MB (39,703,524 字节)
- InputStream inputStream = new FileInputStream(fileName);
- DataOutputStream dataOutputStream = new DataOutputStream(socket.getOutputStream());
- try {
- byte[] buffer = new byte[1024];
- Integer read, total = 0;
- long time = System.currentTimeMillis();
- while ((read = inputStream.read(buffer)) > 0){
- total += read;
- dataOutputStream.write(buffer);
- }
- long end = System.currentTimeMillis();
- System.out.println("发送" + total + ",用时:" + ((end - time) ));
- } finally {
- dataOutputStream.close();
- socket.close();
- inputStream.close();
- }
- SocketChannel socketChannel = SocketChannel.open();
- socketChannel.connect(new InetSocketAddress("localhost", 8999));
- socketChannel.configureBlocking(true);
- String fileName = "E://workSpace//store.log";//37.8 MB (39,703,524 字节)
- FileChannel fileChannel = null;
- try {
- fileChannel = new FileInputStream(fileName).getChannel();
- long size = fileChannel.size();
- long position = 0;
- long total = 0;
- long timeMillis = System.currentTimeMillis();
- while (position < size) {
- long currentNum = fileChannel.transferTo(position, fileChannel.size(), socketChannel);
- if (currentNum <= 0) {
- break;
- }
- total += currentNum;
- position += currentNum;
- }
- long timeMillis1 = System.currentTimeMillis();
- System.out.println("发送:" + total + ",用时:"+ (timeMillis1 - timeMillis) );
- } finally {
- fileChannel.close();
- socketChannel.close();
- }
上面提供了两种方式,传统的IO读写和mmap的读写,基于socket发送数据
会发现,零拷贝的方式比传统的方式从读取到发送快了百分之70 -80左右
所以,如果你需要优化网络传输的性能,或者文件读写的速度,请尽量使用零拷贝。它不仅能较少复制拷贝次数,还能较少上下文切换。
【打怪升级】【rocketMq】rocket的持久化的更多相关文章
- SDUT oj 3005 打怪升级(内存搜索)
当比赛一直纠缠骑2如何做一个非常大的数量,数组不开啊...后来他们发现自己很傻啊,该数不超过最大10什么,这个上限就是力量100什么.. .. 其它的就是记忆化搜索啊,还有就是加一点力量的瓶子当时就要 ...
- Flask连接数据库打怪升级之旅
一.前言 在初学 Flask 的时候,在数据库连接这部分也跟每个初学者一样.但是随着工作中项目接手的多了,代码写的多了,历练的多了也就有了自己的经验和技巧.在对这块儿代码不断的进行升级改造后,整理了在 ...
- 从苦逼到牛逼,详解Linux运维工程师的打怪升级之路
做运维也快四年多了,就像游戏打怪升级,升级后知识体系和运维体系也相对变化挺大,学习了很多新的知识点. 运维工程师是从一个呆逼进化为苦逼再成长为牛逼的过程,前提在于你要能忍能干能拼,还要具有敏锐的嗅觉感 ...
- 运维工程师打怪升级进阶之路 V2.0
在此之前,发布过两个版本: 运维工程师打怪升级之路 V1.0 版本发布 运维工程师打怪升级必经之路 V1.0.1 很多读者伙伴们反应总结的很系统.很全面,无论是0基础初学者,还是有基础的入门者,或者是 ...
- 1255: 打怪升级(Java)
WUSTOJ 1255: 打怪升级 Description 对于多数RPG游戏来说,除了剧情就是打怪升级.本题的任务是用最短的时间取得所有战斗的胜利.这些战斗必须按照特定的顺序进行,每打赢一场,都可能 ...
- 20190528-JavaScriptの打怪升级旅行 { 语句 [ 赋值 ,数据 ] }
写在前面的乱七八糟:今天考了试,emmm很基础的题,还是Mrs房的面试题让人绝望啊┓( ´∀` )┏,补了很多知识,很综合的题,坑也很多,总的来说,查漏补缺,其实是啥都缺~ 今天打的小BOSS主要是数 ...
- Oracle打怪升级之路二【视图、序列、游标、索引、存储过程、触发器】
前言 在之前 <Oracle打怪升级之路一>中我们主要介绍了Oracle的基础和Oracle常用查询及函数,这篇文章作为补充,主要介绍Oracle的对象,视图.序列.同义词.索引等,以及P ...
- 沧桑巨变中焕发青春活力-记极1s HC5661A 打怪升级之路
最近发现一个新货umaxhosting年付10美元的便宜VPS.2杯喜茶的价格可以让你在国外拥有一个1024MB (1GB) DDR3 RAM.1024MB (1GB) vSwap.70GB RAID ...
- Harbor打怪升级
目录 一.目标 二.V1.4升级至V1.6 三.V1.6升级至V1.9 四.V1.9升级至V2.0 五.写在最后 一.目标 Harbor V1.4版本升级至V2.0 注: Harbor升级需要注意的是 ...
- “奥特曼攻打小怪兽”java学习打怪升级第一步
---恢复内容开始--- 练习:回合制对战游戏:奥特曼和小怪兽进行PK,直到一方的血量为0时结束战斗,输出谁胜利了! 不难看出场景中有两个对象:”奥特曼“这一对象抽象为”Ao"类: ...
随机推荐
- 微信字体大小调整导致的H5页面错乱问题处理
当用户调整微信字体大小时会导致H5页面错乱,解决方案如下: ios:在css中加入-webkit-text-size-adjust: 100% !important; body { -webk ...
- Pytest Fixture(三)
name: name参数表示可以对fixture的名称进行重命名: 注意:通过name重命名后,继续使用以前的名字调用会报错. import pytest @pytest.fixture(name=' ...
- ProcessLassoLauncher.exe
html, body { font-size: 15px } body { font-family: Helvetica, "Hiragino Sans GB", 微软雅黑, &q ...
- 用python判断三角形的形状
# coding:utf-8 class point: def __init__(self,x,y,name): self.x = x self.y = y self.name = name '''两 ...
- es6中箭头函数和this指向
箭头函数相当于匿名函数,简化了函数定义. 箭头函数有两种写法,当函数体是单条语句的时候可以省略{}和return. 另一种是包含多条语句,不可以省略{}和return. 特点 箭头函数最大的特点就是没 ...
- 【python】python3.7与3.9共存,两个3版本同时存在(平时用vscode敲代码)pip复制
1.按照安装python及环境配置 - 人间寒梅 - 博客园 (cnblogs.com),将3.9装好. 2.在官网下载3.7的对应文件 3.下载后运行,并自定义下载且选中添加到path.,自己为py ...
- 方法(Java)
什么是方法? 基本介绍 在其他语言中也叫函数 System.out.println();类名.对象.方法: Java方法是语句的集合,它们在一起执行一个功能 方法是解决一类问题的步骤的有序集合 方法包 ...
- PLC入门笔记6
计数器指令及其应用 计数器指令介绍 很多场合需要进行计数操作.例如电机启动次数.生产线物料经过次数.位置传感器传送的脉冲次数等. 计数器分为普通和高速两种. 比PLC扫描频率远小于用普通,接近或大于用 ...
- pandas(随时更新)
pandas处理一个表中的一列数据被另一个表中的另一列数据替换: df1=pd.DataFrame({'id':[1,2,3],'name':['Andy1','Jacky1','Bruce1']}) ...
- oracle中的!=与<>和^=
oracle中的!=与<>和^=!= . <>.^= 三个符号都表示"不等于"的意思,在逻辑上没有本质区别但是要主义的是三个符号在表达"不等于&q ...