【打怪升级】【rocketMq】rocket的持久化
rocket持久化保证的思想有两点:1是刷盘保证大部分数据不丢失;2是持久化文件的处理,零拷贝技术和内存页,NIO模型保证处理能力
文件持久化目录
├──abort:rocket broker启动检查的文件,正常启动会写入一个abort,正常退出会删除abort,通过它来判断上一次是否异常退出
├──checkpoint:随着broker启动,加载的历史检查点
├──lock:全局资源的文件锁
├──commitlog:broker存储的核心,我们都是到rocket是broker集中存储,落地存盘就存在commitlog里
│ ├──00000000000000000000(示例)rocket会对commitlog进行预创建,并将消息写入,每次创建的文件根据当前文件偏移量决定,例如第一次创建就是00000000000000000000
├──compaction:(基于rocket 5.0)
│ ├──position-checkpoint:缓存上一次消费的检查点,每次处理完成后会更新
├──config:
│ ├──consumerFilter.json:存储对应topic下的消息过滤规则:ConcurrentMap<String/*Topic*/, FilterDataMapByTopic>
│ ├──consumerOffset.json:根据消费者组存储的每个消费者消费点位:ConcurrentMap<String/* topic@group */, ConcurrentMap<Integer, Long>>
│ ├──consumerOrderInfo.json:顺序消息顺序:ConcurrentHashMap<String/* topic@group*/, ConcurrentHashMap<Integer/*queueId*/, OrderInfo>>
│ ├──delayOffset.json:针对消费者pull的延时队列拉取消费点位
│ ├──subscriptionGroup.json:消费者组对应订阅的消息信息,其实就是broker接收的消费者信息
│ ├──topics.json:存储对应的topic信息
│ ├──timercheck:基于定时消息的时间轮配置文件,rocket5.0以上版本
│ ├──timermetrics:基于定时消息的时间轮配置文件,rocket5.0以上版本
├──consumequeue:broker对应topic下队列的消费信息
│ ├──%{topicName}:主题名称
│ │ ├──%{queueId}:队列id
│ │ │ ├──00000000000000000000:消费点位
├──index:索引文目录
│ ├──00000000000000000000:索引文件,快速定位commitlog中的消息位置
└──timerwheel:基于时间轮算法实现定时消息的配置
这些文件是broker支持容灾的基础,rocket集群其实就是broker集群的能力,通过这些配置文件可以做到不丢失,在broker启动时会加载对应的配置。
/**
* 上层抽象的配置工厂,在broker启动时会根据组件依次加载,并将文件读取到变量中。例如consumerOffsetTable
* 抽象类下每一个manager加载对应的配置信息
*/
public abstract class ConfigManager {
private static final Logger log = LoggerFactory.getLogger(LoggerName.COMMON_LOGGER_NAME); public abstract String encode();
store存储
rocket基于文件的处理,底层是采用mmap的方式和NIO的byteBuffer,在store上层封装了基本的组件
/**
* TODO store消息处理的核心对象 mappedFile封装了对消息处理 写入
* NIO 的文件到磁盘的处理工具
*/
public class DefaultMappedFile extends AbstractMappedFile {
// 操作系统数据页 4K,unix系列通常是这个大小
public static final int OS_PAGE_SIZE = 1024 * 4;
public static final Unsafe UNSAFE = getUnsafe();
private static final Method IS_LOADED_METHOD;
public static final int UNSAFE_PAGE_SIZE = UNSAFE == null ? OS_PAGE_SIZE : UNSAFE.pageSize(); protected static final Logger log = LoggerFactory.getLogger(LoggerName.STORE_LOGGER_NAME); // mq总共分配的映射文件内存大小
protected static final AtomicLong TOTAL_MAPPED_VIRTUAL_MEMORY = new AtomicLong(0); // mq总共创建的内存文件映射数量
protected static final AtomicInteger TOTAL_MAPPED_FILES = new AtomicInteger(0); protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> WROTE_POSITION_UPDATER;
protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> COMMITTED_POSITION_UPDATER;
protected static final AtomicIntegerFieldUpdater<DefaultMappedFile> FLUSHED_POSITION_UPDATER; // 当前数据的写入位置指针,下次写数据从此开始写入
protected volatile int wrotePosition;
// 当前数据的提交指针,指针之前的数据已提交到fileChannel,commitPos~writePos之间的数据是还未提交到fileChannel的
protected volatile int committedPosition;
// 当前数据的刷盘指针,指针之前的数据已落盘,commitPos~flushedPos之间的数据是还未落盘的
protected volatile int flushedPosition;
//文件大小 字节
protected int fileSize;
// TODO 磁盘文件的内存文件通道对象 也是mmap的方式体现
protected FileChannel fileChannel;
/**
* Message will put to here first, and then reput to FileChannel if writeBuffer is not null.
*/
// 异步刷盘时数据先写入writeBuf,由CommitRealTime线程定时200ms提交到fileChannel内存,再由FlushRealTime线程定时500ms刷fileChannel落盘
protected ByteBuffer writeBuffer = null;
// 堆外内存池,服务于异步刷盘机制,为了减少内存申请和销毁的时间,提前向OS申请并锁定一块对外内存池,writeBuf就从这里获取
protected TransientStorePool transientStorePool = null;
// 文件起始的字节
protected String fileName;
// 文件的初始消费点位,跟文件的命名相关 例如 00000000000000000000 就代表从0开始,默认一个commitLog是1G 大小,那么超过之后会生成新的commitLog 文件名称就是当前文件起始的偏移量
protected long fileFromOffset;
protected File file;
// 磁盘文件的内存映射对象,同步刷盘时直接将数据写入到mapedBuf
protected MappedByteBuffer mappedByteBuffer;
// 最近操作的时间戳
protected volatile long storeTimestamp = 0;
protected boolean firstCreateInQueue = false;
private long lastFlushTime = -1L; protected MappedByteBuffer mappedByteBufferWaitToClean = null;
protected long swapMapTime = 0L;
protected long mappedByteBufferAccessCountSinceLastSwap = 0L;
首先,核心的DefaultMappedFile 使用了 FileChannel 通道,它也是基于mmap的实现零拷贝技术。
其中它定义了三个指针,分别是
wrotePosition:当前数据的写入位置指针,下次写数据从此开始写入
committedPosition:当前数据的提交指针,指针之前的数据已提交到fileChannel,commitPos~writePos之间的数据是还未提交到fileChannel的
flushedPosition:当前数据的刷盘指针,指针之前的数据已落盘,commitPos~flushedPos之间的数据是还未落盘的
同时,定义了ByteBuffer,基于NIO在异步刷盘时,先会将数据写入byteBuffer,然后会有定时线程会定时拉取到fileChannel通道,最后将fileChannel进行刷盘
/**
* 根据队列中的AllocateRequest创建下一个commitLog
*/
public void run() {
log.info(this.getServiceName() + " service started"); while (!this.isStopped() && this.mmapOperation()) { }
log.info(this.getServiceName() + " service end");
}
AllocateRequest封装的是对commitLog预处理的动作,AllocateRequest是对预创建commitLog的封装,会在处理时预创建并将放入队列,在store启动时会启动AllocateMappedFileService的线程监听创建
/**
* TODO commitLog 创建预处理封装的核心
* @param nextFilePath
* @param nextNextFilePath
* @param fileSize
* @return
*/
public MappedFile putRequestAndReturnMappedFile(String nextFilePath, String nextNextFilePath, int fileSize) {
int canSubmitRequests = 2;
if (this.messageStore.isTransientStorePoolEnable()) {
if (this.messageStore.getMessageStoreConfig().isFastFailIfNoBufferInStorePool()
&& BrokerRole.SLAVE != this.messageStore.getMessageStoreConfig().getBrokerRole()) { //if broker is slave, don't fast fail even no buffer in pool
canSubmitRequests = this.messageStore.getTransientStorePool().availableBufferNums() - this.requestQueue.size();
}
} //封装一个AllocateRequest放在队列里,异步线程方式去获取执行
AllocateRequest nextReq = new AllocateRequest(nextFilePath, fileSize);
boolean nextPutOK = this.requestTable.putIfAbsent(nextFilePath, nextReq) == null; if (nextPutOK) {
if (canSubmitRequests <= 0) {
log.warn("[NOTIFYME]TransientStorePool is not enough, so create mapped file error, " +
"RequestQueueSize : {}, StorePoolSize: {}", this.requestQueue.size(), this.messageStore.getTransientStorePool().availableBufferNums());
this.requestTable.remove(nextFilePath);
return null;
}
boolean offerOK = this.requestQueue.offer(nextReq);
if (!offerOK) {
log.warn("never expected here, add a request to preallocate queue failed");
}
canSubmitRequests--;
} AllocateRequest nextNextReq = new AllocateRequest(nextNextFilePath, fileSize);
boolean nextNextPutOK = this.requestTable.putIfAbsent(nextNextFilePath, nextNextReq) == null;
if (nextNextPutOK) {
if (canSubmitRequests <= 0) {
log.warn("[NOTIFYME]TransientStorePool is not enough, so skip preallocate mapped file, " +
"RequestQueueSize : {}, StorePoolSize: {}", this.requestQueue.size(), this.messageStore.getTransientStorePool().availableBufferNums());
this.requestTable.remove(nextNextFilePath);
} else {
boolean offerOK = this.requestQueue.offer(nextNextReq);
if (!offerOK) {
log.warn("never expected here, add a request to preallocate queue failed");
}
}
} if (hasException) {
log.warn(this.getServiceName() + " service has exception. so return null");
return null;
}
// 阻塞等待AllocateMapFile线程创建好文件并返回
AllocateRequest result = this.requestTable.get(nextFilePath);
try {
if (result != null) {
messageStore.getPerfCounter().startTick("WAIT_MAPFILE_TIME_MS");
boolean waitOK = result.getCountDownLatch().await(waitTimeOut, TimeUnit.MILLISECONDS);
messageStore.getPerfCounter().endTick("WAIT_MAPFILE_TIME_MS");
if (!waitOK) {
log.warn("create mmap timeout " + result.getFilePath() + " " + result.getFileSize());
return null;
} else {
this.requestTable.remove(nextFilePath);
return result.getMappedFile();
}
} else {
log.error("find preallocate mmap failed, this never happen");
}
} catch (InterruptedException e) {
log.warn(this.getServiceName() + " service has exception. ", e);
}
在 Broker 初始化时会启动管理 MappedFile 创建的 AllocateMappedFileService 异步线程。消息处理线程 和 AllocateMappedFileService 线程通过队列 requestQueue 关联。
消息写入时调用 AllocateMappedFileService 的 putRequestAndReturnMappedFile 方法往 requestQueue 放入提交创建 MappedFile 请求,这边会同时构建两个 AllocateRequest 放入队列。
AllocateMappedFileService 线程循环从 requestQueue 获取 AllocateRequest 来创建 MappedFile。消息处理线程通过 CountDownLatch 等待获取第一个 MappedFile 创建成功就返回。
当消息处理线程需要再次创建 MappedFile 时,此时可以直接获取之前已预创建的 MappedFile。这样通过预创建 MappedFile ,减少文件创建等待时间。
store消息存储全流程
从图上可以看到,从生产者到消费者,store扮演了重要的角色。
生产者发送消息后,会进行消息存盘,消费者消费消息后,会进行消费进度存盘。
下面我们详细说说store的流程
消息存储-从生产者到磁盘
消息被生产者创建并发送到broker后,会对消息先进行存盘。如果是异步消息,存盘是由单独的子线程定时去处理的,如果是同步消息,则会阻塞等待消息处理完成后再进行返回。
消息首先会经过producer,组装后会通过netty发送给broker,我们只关系broker的处理流程,如果想了解生产者之前的处理方式,可参考之前的文章。
首先,broker中processor是broker对client基于netty的一些动作通知的封装,AbstractSendMessageProcessor上层会封装一些基本功能,例如消息重试,消息发送私信队列,以及一些beforeHook和afterHook前后置处理钩子函数,在producer发送sendMessage动作后,会将req发送至SendMessageProcessor,SendMessageProcessor 是client做sendMessage动作时,broker处理发送消息的加工者。
public RemotingCommand processRequest(ChannelHandlerContext ctx,
RemotingCommand request) throws RemotingCommandException {
SendMessageContext sendMessageContext;
switch (request.getCode()) {
case RequestCode.CONSUMER_SEND_MSG_BACK:
return this.consumerSendMsgBack(ctx, request);
default:
//发送成功的处理
SendMessageRequestHeader requestHeader = parseRequestHeader(request);
if (requestHeader == null) {
return null;
}
TopicQueueMappingContext mappingContext = this.brokerController.getTopicQueueMappingManager().buildTopicQueueMappingContext(requestHeader, true);
RemotingCommand rewriteResult = this.brokerController.getTopicQueueMappingManager().rewriteRequestForStaticTopic(requestHeader, mappingContext);
if (rewriteResult != null) {
return rewriteResult;
}
sendMessageContext = buildMsgContext(ctx, requestHeader, request);
try {
//加载前置钩子函数
this.executeSendMessageHookBefore(sendMessageContext);
} catch (AbortProcessException e) {
final RemotingCommand errorResponse = RemotingCommand.createResponseCommand(e.getResponseCode(), e.getErrorMessage());
errorResponse.setOpaque(request.getOpaque());
return errorResponse;
} RemotingCommand response;
//针对单消息处理和批量消息处理,并执行后置钩子函数
if (requestHeader.isBatch()) {
response = this.sendBatchMessage(ctx, request, sendMessageContext, requestHeader, mappingContext,
(ctx1, response1) -> executeSendMessageHookAfter(response1, ctx1));
} else {
response = this.sendMessage(ctx, request, sendMessageContext, requestHeader, mappingContext,
(ctx12, response12) -> executeSendMessageHookAfter(response12, ctx12));
} return response;
}
}
如果消息是重试消息,则将消息发送到%retry%-topic队列进行重试,并处理重试等级及重试次数。
这里最核心的是针对单消息处理和批量消息处理,对应的是处理单消息和多消息,broker封装的MessageBatch就是批量消息。
public RemotingCommand sendMessage(final ChannelHandlerContext ctx,
final RemotingCommand request,
final SendMessageContext sendMessageContext,
final SendMessageRequestHeader requestHeader,
final TopicQueueMappingContext mappingContext,
final SendMessageCallback sendMessageCallback) throws RemotingCommandException { final RemotingCommand response = preSend(ctx, request, requestHeader);
if (response.getCode() != -1) {
return response;
} final SendMessageResponseHeader responseHeader = (SendMessageResponseHeader) response.readCustomHeader();
//获取消息内容
final byte[] body = request.getBody(); //获取消息指定队列id
int queueIdInt = requestHeader.getQueueId();
TopicConfig topicConfig = this.brokerController.getTopicConfigManager().selectTopicConfig(requestHeader.getTopic()); //如果队列id小于0,默认是非法的id,则重新分配一个队列进行绑定
if (queueIdInt < 0) {
queueIdInt = randomQueueId(topicConfig.getWriteQueueNums());
} MessageExtBrokerInner msgInner = new MessageExtBrokerInner();
msgInner.setTopic(requestHeader.getTopic());
msgInner.setQueueId(queueIdInt); Map<String, String> oriProps = MessageDecoder.string2messageProperties(requestHeader.getProperties());
//如果是重试消息或达到最大次数进入死信队列的消息,则直接返回
if (!handleRetryAndDLQ(requestHeader, response, request, msgInner, topicConfig, oriProps)) {
return response;
} msgInner.setBody(body);
msgInner.setFlag(requestHeader.getFlag()); String uniqKey = oriProps.get(MessageConst.PROPERTY_UNIQ_CLIENT_MESSAGE_ID_KEYIDX);
if (uniqKey == null || uniqKey.length() <= 0) {
uniqKey = MessageClientIDSetter.createUniqID();
oriProps.put(MessageConst.PROPERTY_UNIQ_CLIENT_MESSAGE_ID_KEYIDX, uniqKey);
} MessageAccessor.setProperties(msgInner, oriProps); CleanupPolicy cleanupPolicy = CleanupPolicyUtils.getDeletePolicy(Optional.of(topicConfig));
if (Objects.equals(cleanupPolicy, CleanupPolicy.COMPACTION)) {
if (StringUtils.isBlank(msgInner.getKeys())) {
response.setCode(ResponseCode.MESSAGE_ILLEGAL);
response.setRemark("Required message key is missing");
return response;
}
} msgInner.setTagsCode(MessageExtBrokerInner.tagsString2tagsCode(topicConfig.getTopicFilterType(), msgInner.getTags()));
msgInner.setBornTimestamp(requestHeader.getBornTimestamp());
msgInner.setBornHost(ctx.channel().remoteAddress());
msgInner.setStoreHost(this.getStoreHost());
msgInner.setReconsumeTimes(requestHeader.getReconsumeTimes() == null ? 0 : requestHeader.getReconsumeTimes());
String clusterName = this.brokerController.getBrokerConfig().getBrokerClusterName();
MessageAccessor.putProperty(msgInner, MessageConst.PROPERTY_CLUSTER, clusterName); msgInner.setPropertiesString(MessageDecoder.messageProperties2String(msgInner.getProperties())); // Map<String, String> oriProps = MessageDecoder.string2messageProperties(requestHeader.getProperties());
String traFlag = oriProps.get(MessageConst.PROPERTY_TRANSACTION_PREPARED);
boolean sendTransactionPrepareMessage = false;
if (Boolean.parseBoolean(traFlag)
&& !(msgInner.getReconsumeTimes() > 0 && msgInner.getDelayTimeLevel() > 0)) { //For client under version 4.6.1
/**
* 如果当前消息已经被消费者消费了不止一次,或者它的消费次数大于0,说明它已经是一个重复消费的消息了,如果它是一个事务消息,这是不允许的
*/
if (this.brokerController.getBrokerConfig().isRejectTransactionMessage()) {
response.setCode(ResponseCode.NO_PERMISSION);
response.setRemark(
"the broker[" + this.brokerController.getBrokerConfig().getBrokerIP1()
+ "] sending transaction message is forbidden");
return response;
}
sendTransactionPrepareMessage = true;
} long beginTimeMillis = this.brokerController.getMessageStore().now(); /**
* TODO 这是才是针对消息做的处理,根据broker同步或异步模型,则针对事务消息和普通消息做消息的处理
*/
if (brokerController.getBrokerConfig().isAsyncSendEnable()) {
CompletableFuture<PutMessageResult> asyncPutMessageFuture;
//putMessage 是处理store 消息存储的核心
if (sendTransactionPrepareMessage) {
/**
* @see org.apache.rocketmq.broker.transaction.queue.TransactionalMessageServiceImpl.asyncPrepareMessage
* 将消息包装成half消息
*/
asyncPutMessageFuture = this.brokerController.getTransactionalMessageService().asyncPrepareMessage(msgInner);
} else {
asyncPutMessageFuture = this.brokerController.getMessageStore().asyncPutMessage(msgInner);
} final int finalQueueIdInt = queueIdInt;
final MessageExtBrokerInner finalMsgInner = msgInner;
/**
* 处理完成后,异步回调handlePutMessageResult,如果是同步模型,则阻塞handlePutMessageResult等待处理,这里跟下文else中处理方式类似,只是采用非阻塞的异步任务处理
*/
asyncPutMessageFuture.thenAcceptAsync(putMessageResult -> {
RemotingCommand responseFuture =
handlePutMessageResult(putMessageResult, response, request, finalMsgInner, responseHeader, sendMessageContext,
ctx, finalQueueIdInt, beginTimeMillis, mappingContext, BrokerMetricsManager.getMessageType(requestHeader));
if (responseFuture != null) {
doResponse(ctx, request, responseFuture);
}
sendMessageCallback.onComplete(sendMessageContext, response);
}, this.brokerController.getPutMessageFutureExecutor());
// Returns null to release the send message thread
return null;
} else {
PutMessageResult putMessageResult = null;
if (sendTransactionPrepareMessage) {
putMessageResult = this.brokerController.getTransactionalMessageService().prepareMessage(msgInner);
} else {
putMessageResult = this.brokerController.getMessageStore().putMessage(msgInner);
}
handlePutMessageResult(putMessageResult, response, request, msgInner, responseHeader, sendMessageContext, ctx, queueIdInt, beginTimeMillis, mappingContext, BrokerMetricsManager.getMessageType(requestHeader));
sendMessageCallback.onComplete(sendMessageContext, response);
return response;
}
}
首先进行前期的组装,消息体,设置队列id,丢弃一部分不合法消息,如重试消息或达到死信队列的消息。
再将消息进行分类,如果是异步消息,且消息类型为事务消息,则异步处理一个asyncHalf,如果是其他类型的消息,根据消息内容进行异步的存储
//putMessage 是处理store 消息存储的核心
if (sendTransactionPrepareMessage) {
/**
* @see org.apache.rocketmq.broker.transaction.queue.TransactionalMessageServiceImpl.asyncPrepareMessage
* 将消息包装成half消息
*/
asyncPutMessageFuture = this.brokerController.getTransactionalMessageService().asyncPrepareMessage(msgInner);
} else {
asyncPutMessageFuture = this.brokerController.getMessageStore().asyncPutMessage(msgInner);
}
等待future处理完成后,异步回调handlePutMessageResult,如果是同步模型,则阻塞handlePutMessageResult等待处理,这里跟下文else中处理方式类似,只是采用非阻塞的异步任务处理;同步方式处理的流程是一样的,只是使用主线程阻塞处理。
如果是采取异步处理,根据上一次的刷盘时间和策略定义3000ms时间进行线程监控,监控流程类似jdk9中对completableFuture中使用get阻塞超时时间。
@Override
public PutMessageResult putMessage(MessageExtBrokerInner msg) {
return waitForPutResult(asyncPutMessage(msg));
}
//future异步任务的超时处理
private PutMessageResult waitForPutResult(CompletableFuture<PutMessageResult> putMessageResultFuture) {
try {
int putMessageTimeout =
Math.max(this.messageStoreConfig.getSyncFlushTimeout(),
this.messageStoreConfig.getSlaveTimeout()) + 5000;
return putMessageResultFuture.get(putMessageTimeout, TimeUnit.MILLISECONDS);
} catch (ExecutionException | InterruptedException e) {
return new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, null);
} catch (TimeoutException e) {
LOGGER.error("usually it will never timeout, putMessageTimeout is much bigger than slaveTimeout and "
+ "flushTimeout so the result can be got anyway, but in some situations timeout will happen like full gc "
+ "process hangs or other unexpected situations.");
return new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, null);
}
}
真正对消息存储的处理,在DefaultMessageStore的asyncPutMessage中
public CompletableFuture<PutMessageResult> asyncPutMessage(MessageExtBrokerInner msg) { //先指定初始化的前置钩子函数
for (PutMessageHook putMessageHook : putMessageHookList) {
PutMessageResult handleResult = putMessageHook.executeBeforePutMessage(msg);
if (handleResult != null) {
return CompletableFuture.completedFuture(handleResult);
}
} /**
* 检查消息的格式,如果格式不合法则直接中断
*/
if (msg.getProperties().containsKey(MessageConst.PROPERTY_INNER_NUM)
&& !MessageSysFlag.check(msg.getSysFlag(), MessageSysFlag.INNER_BATCH_FLAG)) {
LOGGER.warn("[BUG]The message had property {} but is not an inner batch", MessageConst.PROPERTY_INNER_NUM);
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, null));
} if (MessageSysFlag.check(msg.getSysFlag(), MessageSysFlag.INNER_BATCH_FLAG)) {
Optional<TopicConfig> topicConfig = this.getTopicConfig(msg.getTopic());
if (!QueueTypeUtils.isBatchCq(topicConfig)) {
LOGGER.error("[BUG]The message is an inner batch but cq type is not batch cq");
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, null));
}
} long beginTime = this.getSystemClock().now();
//commitLog处理消息
CompletableFuture<PutMessageResult> putResultFuture = this.commitLog.asyncPutMessage(msg); /**
* 计算future存储消息所用的时间并将其更新
*/
putResultFuture.thenAccept(result -> {
long elapsedTime = this.getSystemClock().now() - beginTime;
if (elapsedTime > 500) {
LOGGER.warn("DefaultMessageStore#putMessage: CommitLog#putMessage cost {}ms, topic={}, bodyLength={}",
elapsedTime, msg.getTopic(), msg.getBody().length);
}
this.storeStatsService.setPutMessageEntireTimeMax(elapsedTime); if (null == result || !result.isOk()) {
//如果处理失败,则增加一次保存消息失败的次数
this.storeStatsService.getPutMessageFailedTimes().add(1);
}
}); return putResultFuture;
}
可以看到其实asyncPutMessage将处理结果封装成completableFuture异步执行,开始先做了HookBefore的前置钩子函数,然后检查消息格式以及topic的配置,最后在处理完成后更新了处理的时间和失败次数在storeStatus的成员变量中。其中最核心的操作其实是 CompletableFuture<PutMessageResult> putResultFuture = this.commitLog.asyncPutMessage(msg); ,它是根据消息进行append,最核心的处理文件的方式就是mappedFileChannel
/**
* TODO 核心存储消息的代码
* @param msg
* @return
*/
public CompletableFuture<PutMessageResult> asyncPutMessage(final MessageExtBrokerInner msg) {
// Set the storage time
if (!defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()) {
msg.setStoreTimestamp(System.currentTimeMillis());
} // Set the message body CRC (consider the most appropriate setting on the client)
msg.setBodyCRC(UtilAll.crc32(msg.getBody()));
// Back to Results
AppendMessageResult result = null; StoreStatsService storeStatsService = this.defaultMessageStore.getStoreStatsService(); String topic = msg.getTopic();
msg.setVersion(MessageVersion.MESSAGE_VERSION_V1);
boolean autoMessageVersionOnTopicLen =
this.defaultMessageStore.getMessageStoreConfig().isAutoMessageVersionOnTopicLen();
if (autoMessageVersionOnTopicLen && topic.length() > Byte.MAX_VALUE) {
msg.setVersion(MessageVersion.MESSAGE_VERSION_V2);
} InetSocketAddress bornSocketAddress = (InetSocketAddress) msg.getBornHost();
if (bornSocketAddress.getAddress() instanceof Inet6Address) {
msg.setBornHostV6Flag();
} InetSocketAddress storeSocketAddress = (InetSocketAddress) msg.getStoreHost();
if (storeSocketAddress.getAddress() instanceof Inet6Address) {
msg.setStoreHostAddressV6Flag();
} //获取本地线程的变量,并更新最大消息大小
PutMessageThreadLocal putMessageThreadLocal = this.putMessageThreadLocal.get();
updateMaxMessageSize(putMessageThreadLocal);
//根据topic和queue的messgae信息组装成一个唯一的topicQueueKey 格式为:topic-queueId
String topicQueueKey = generateKey(putMessageThreadLocal.getKeyBuilder(), msg);
long elapsedTimeInLock = 0;
MappedFile unlockMappedFile = null;
//TODO 获取上一次操作的mapperFile 也就是最后的一个mapped
MappedFile mappedFile = this.mappedFileQueue.getLastMappedFile(); //如果当前没有mappedFile 说明是第一次创建,则从最开始进行位置计算
long currOffset;
if (mappedFile == null) {
currOffset = 0;
} else {
//如果有说明当前的消息应该存储在 当前commit文件名的位置加上当前指针已经偏移的位置
currOffset = mappedFile.getFileFromOffset() + mappedFile.getWrotePosition();
} //计算需要ack的数量以及是否需要做HA通知broker
int needAckNums = this.defaultMessageStore.getMessageStoreConfig().getInSyncReplicas();
boolean needHandleHA = needHandleHA(msg); if (needHandleHA && this.defaultMessageStore.getBrokerConfig().isEnableControllerMode()) {
if (this.defaultMessageStore.getHaService().inSyncReplicasNums(currOffset) < this.defaultMessageStore.getMessageStoreConfig().getMinInSyncReplicas()) {
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.IN_SYNC_REPLICAS_NOT_ENOUGH, null));
}
if (this.defaultMessageStore.getMessageStoreConfig().isAllAckInSyncStateSet()) {
// -1 means all ack in SyncStateSet
needAckNums = MixAll.ALL_ACK_IN_SYNC_STATE_SET;
}
} else if (needHandleHA && this.defaultMessageStore.getBrokerConfig().isEnableSlaveActingMaster()) {
int inSyncReplicas = Math.min(this.defaultMessageStore.getAliveReplicaNumInGroup(),
this.defaultMessageStore.getHaService().inSyncReplicasNums(currOffset));
needAckNums = calcNeedAckNums(inSyncReplicas);
if (needAckNums > inSyncReplicas) {
// Tell the producer, don't have enough slaves to handle the send request
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.IN_SYNC_REPLICAS_NOT_ENOUGH, null));
}
} //对当前指定的key进行锁定,当前key说明是一个topic下一个队列
topicQueueLock.lock(topicQueueKey);
try { boolean needAssignOffset = true;
if (defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()
&& defaultMessageStore.getMessageStoreConfig().getBrokerRole() != BrokerRole.SLAVE) {
needAssignOffset = false;
}
if (needAssignOffset) {
defaultMessageStore.assignOffset(msg, getMessageNum(msg));
} PutMessageResult encodeResult = putMessageThreadLocal.getEncoder().encode(msg);
if (encodeResult != null) {
return CompletableFuture.completedFuture(encodeResult);
}
msg.setEncodedBuff(putMessageThreadLocal.getEncoder().getEncoderBuffer());
//存储消息的上下文
PutMessageContext putMessageContext = new PutMessageContext(topicQueueKey); //spin或ReentrantLock,具体取决于存储配置
putMessageLock.lock(); //spin or ReentrantLock ,depending on store config
try {
//加锁成功后的时间
long beginLockTimestamp = this.defaultMessageStore.getSystemClock().now();
this.beginTimeInLock = beginLockTimestamp; // Here settings are stored timestamp, in order to ensure an orderly
// global
//设置存储时间为加锁成功后的时间,保证顺序
if (!defaultMessageStore.getMessageStoreConfig().isDuplicationEnable()) {
msg.setStoreTimestamp(beginLockTimestamp);
} //如果当前没有mapped或mapped已经满了,则会创建新的mapped
if (null == mappedFile || mappedFile.isFull()) {
mappedFile = this.mappedFileQueue.getLastMappedFile(0); // Mark: NewFile may be cause noise
}
if (null == mappedFile) {
log.error("create mapped file1 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, null));
} //追加写入的内容
result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
switch (result.getStatus()) {
case PUT_OK:
onCommitLogAppend(msg, result, mappedFile);
break;
case END_OF_FILE:
//如果文件空间不足,重新初始化文件并尝试重新写入
onCommitLogAppend(msg, result, mappedFile);
unlockMappedFile = mappedFile;
// Create a new file, re-write the message
mappedFile = this.mappedFileQueue.getLastMappedFile(0);
if (null == mappedFile) {
// XXX: warn and notify me
log.error("create mapped file2 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, result));
}
result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
if (AppendMessageStatus.PUT_OK.equals(result.getStatus())) {
onCommitLogAppend(msg, result, mappedFile);
}
break;
case MESSAGE_SIZE_EXCEEDED:
case PROPERTIES_SIZE_EXCEEDED:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, result));
case UNKNOWN_ERROR:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
default:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
} //更新使用的时间
elapsedTimeInLock = this.defaultMessageStore.getSystemClock().now() - beginLockTimestamp;
beginTimeInLock = 0;
} finally {
//释放锁
putMessageLock.unlock();
}
} finally {
//释放锁
topicQueueLock.unlock(topicQueueKey);
} if (elapsedTimeInLock > 500) {
log.warn("[NOTIFYME]putMessage in lock cost time(ms)={}, bodyLength={} AppendMessageResult={}", elapsedTimeInLock, msg.getBody().length, result);
} if (null != unlockMappedFile && this.defaultMessageStore.getMessageStoreConfig().isWarmMapedFileEnable()) {
this.defaultMessageStore.unlockMappedFile(unlockMappedFile);
} PutMessageResult putMessageResult = new PutMessageResult(PutMessageStatus.PUT_OK, result); // Statistics
//存储缓存数据副本的更新
storeStatsService.getSinglePutMessageTopicTimesTotal(msg.getTopic()).add(result.getMsgNum());
storeStatsService.getSinglePutMessageTopicSizeTotal(topic).add(result.getWroteBytes()); //提交刷盘请求,提交副本请求
return handleDiskFlushAndHA(putMessageResult, msg, needAckNums, needHandleHA);
}
先设置一些基本数据,如存储时间,brokerHost,storeHost,获取本地变量LocalThread,更新最大的消息存储大小;
根据topic和queue的messgae信息组装成一个唯一的topicQueueKey 格式为:topic-queueId;获取上一次操作的mapperFile 也就是最后的一个mapped,因为消息的写入是append追加的,消息的持久化都是集中存储的;
如果没有获取到使用过的mappedFileChannel,说明这条消息可能是第一条,那么就创建一个fileChannel通道,如果没有消息那么消费的初始点位肯定是0,如果获取到了fileChannel,其实对应的commitlog文件的名称就是这个文件最开始的消费点位,那么当前消息对应的消费点位其实就是获取到的mappedFile的文件名称 + 当前消息所处的offSet的位置 就是这个文件存储的位置;
校验HA和ack;
先对 topicQueueKey进行锁定,这个key生成的规则是topic下的一个queue,计算这次消费的消费点位;
定义存储消息的上下文 PutMessageContext:
public class PutMessageContext {
private String topicQueueTableKey;//锁定的key
private long[] phyPos;
private int batchSize;//批量数据的大小 public PutMessageContext(String topicQueueTableKey) {
this.topicQueueTableKey = topicQueueTableKey;
}
}
对putMessageLock进行锁定:这里锁定有两种方式:自旋锁和重入锁
/**
* Spin lock Implementation to put message, suggest using this with low race conditions
*/
public class PutMessageSpinLock implements PutMessageLock {
//true: Can lock, false : in lock.
private AtomicBoolean putMessageSpinLock = new AtomicBoolean(true); @Override
public void lock() {
boolean flag;
do {
flag = this.putMessageSpinLock.compareAndSet(true, false);
}
while (!flag);
} @Override
public void unlock() {
this.putMessageSpinLock.compareAndSet(false, true);
}
}
/**
* Exclusive lock implementation to put message
*/
public class PutMessageReentrantLock implements PutMessageLock {
private ReentrantLock putMessageNormalLock = new ReentrantLock(); // NonfairSync @Override
public void lock() {
putMessageNormalLock.lock();
} @Override
public void unlock() {
putMessageNormalLock.unlock();
}
}
在rocket4.X之后,应该都是默认true,异步刷盘建议使用自旋锁,同步刷盘建议使用重入锁,调整Broker配置项`useReentrantLockWhenPutMessage`,默认为false;异步刷盘建议开启`TransientStorePoolEnable`;建议关闭transferMsgByHeap,提高拉消息效率;同步刷盘建议适当增大`sendMessageThreadPoolNums`,具体配置需要经过压测。
设置成功加锁后的时间,保证了操作的顺序。上一步获取的mappedFile如果没有获取到或者已经获取满了,则需要创建新的mappedFile;
/**
* TODO 预处理创建新的commitLog
* @return
*/
public MappedFile getLastMappedFile(final long startOffset, boolean needCreate) {
long createOffset = -1;
/**
* 获取最新的mappedFile
*/
MappedFile mappedFileLast = getLastMappedFile(); //如果获取不到,则说明是第一次创建文件
if (mappedFileLast == null) {
createOffset = startOffset - (startOffset % this.mappedFileSize);
} /**
* 如果文件写满了,则需要计算下一个文件的初始量 其实就是上一个文件最后的偏移量的下一个
*/
if (mappedFileLast != null && mappedFileLast.isFull()) {
createOffset = mappedFileLast.getFileFromOffset() + this.mappedFileSize;
} //创建新的commitLog
if (createOffset != -1 && needCreate) {
return tryCreateMappedFile(createOffset);
} return mappedFileLast;
}
追加需要写入的数据 result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
/**
* TODO append 统一为fileChannel 对文件的写入 提供了单消息和批量消息的写入
*/
public AppendMessageResult appendMessage(final ByteBuffer byteBufferMsg, final CompactionAppendMsgCallback cb) {
assert byteBufferMsg != null;
assert cb != null; //获取当前写入的位置
int currentPos = WROTE_POSITION_UPDATER.get(this);
//当前写入的位置需要比文件最大的位数要小
if (currentPos < this.fileSize) {
//根据appendMessageBuffer选择是否写入writeBuffer还是mapperByteBuffer 异步刷盘应该写入writeBuffer 再定时写到mapperBuffer
ByteBuffer byteBuffer = appendMessageBuffer().slice();
//修改写入位置
byteBuffer.position(currentPos);
AppendMessageResult result = cb.doAppend(byteBuffer, this.fileFromOffset, this.fileSize - currentPos, byteBufferMsg);
//AtomicInteger累计更新写入的位置 WROTE_POSITION_UPDATER其实就是当前已经存储文件的字节
WROTE_POSITION_UPDATER.addAndGet(this, result.getWroteBytes());
//更新最后一次写入时间
this.storeTimestamp = result.getStoreTimestamp();
return result;
}
log.error("MappedFile.appendMessage return null, wrotePosition: {} fileSize: {}", currentPos, this.fileSize);
return new AppendMessageResult(AppendMessageStatus.UNKNOWN_ERROR);
}
写入处理后,根据响应状态处理,store提供了 onCommitLogAppend的提交后追加处理,如果当前写入失败是因为写入的长度不满足,则尝试重新创建文件并写入
switch (result.getStatus()) {
case PUT_OK:
onCommitLogAppend(msg, result, mappedFile);
break;
case END_OF_FILE:
//如果文件空间不足,重新初始化文件并尝试重新写入
onCommitLogAppend(msg, result, mappedFile);
unlockMappedFile = mappedFile;
// Create a new file, re-write the message
mappedFile = this.mappedFileQueue.getLastMappedFile(0);
if (null == mappedFile) {
// XXX: warn and notify me
log.error("create mapped file2 error, topic: " + msg.getTopic() + " clientAddr: " + msg.getBornHostString());
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.CREATE_MAPPED_FILE_FAILED, result));
}
result = mappedFile.appendMessage(msg, this.appendMessageCallback, putMessageContext);
if (AppendMessageStatus.PUT_OK.equals(result.getStatus())) {
onCommitLogAppend(msg, result, mappedFile);
}
break;
case MESSAGE_SIZE_EXCEEDED:
case PROPERTIES_SIZE_EXCEEDED:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.MESSAGE_ILLEGAL, result));
case UNKNOWN_ERROR:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
default:
beginTimeInLock = 0;
return CompletableFuture.completedFuture(new PutMessageResult(PutMessageStatus.UNKNOWN_ERROR, result));
}
处理完成后,释放锁,缓存数据副本更新,提交刷盘并提交HA
/**
* 通知刷盘并HA的核心代码
* @return
*/
private CompletableFuture<PutMessageResult> handleDiskFlushAndHA(PutMessageResult putMessageResult,
MessageExt messageExt, int needAckNums, boolean needHandleHA) {
/**
* 同步刷盘或异步刷盘的任务
*/
CompletableFuture<PutMessageStatus> flushResultFuture = handleDiskFlush(putMessageResult.getAppendMessageResult(), messageExt);
CompletableFuture<PutMessageStatus> replicaResultFuture;
if (!needHandleHA) {
replicaResultFuture = CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
} else {
replicaResultFuture = handleHA(putMessageResult.getAppendMessageResult(), putMessageResult, needAckNums);
} return flushResultFuture.thenCombine(replicaResultFuture, (flushStatus, replicaStatus) -> {
if (flushStatus != PutMessageStatus.PUT_OK) {
putMessageResult.setPutMessageStatus(flushStatus);
}
if (replicaStatus != PutMessageStatus.PUT_OK) {
putMessageResult.setPutMessageStatus(replicaStatus);
}
return putMessageResult;
});
}
@Override
public CompletableFuture<PutMessageStatus> handleDiskFlush(AppendMessageResult result, MessageExt messageExt) {
// Synchronization flush
//同步刷盘
if (FlushDiskType.SYNC_FLUSH == CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushDiskType()) {
final GroupCommitService service = (GroupCommitService) this.flushCommitLogService;
if (messageExt.isWaitStoreMsgOK()) {
GroupCommitRequest request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes(), CommitLog.this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout());
//将刷盘request:GroupCommitRequest放入commitRequests
flushDiskWatcher.add(request);
service.putRequest(request);
return request.future();
} else {
//唤醒线程去消费
service.wakeup();
return CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
}
}
// Asynchronous flush
//异步,唤醒线程就返回
else {
if (!CommitLog.this.defaultMessageStore.isTransientStorePoolEnable()) {
flushCommitLogService.wakeup();
} else {
commitRealTimeService.wakeup();
}
return CompletableFuture.completedFuture(PutMessageStatus.PUT_OK);
}
}
处理完成后,再进行onComplete对后置HookAfter钩子函数的回调
消息存储-从消费者到磁盘
消费者拉取
consumer在startUp时会启动一个线程池异步去指定拉取的动作,pullRequest,client端的流程不在本篇具体描述,流程可以参考之前的文章,如何保证不重复消费。本篇主要考虑在 broker中processoe中如何根据store做消费进度持久化和拉取的。
broker核心处理拉取方法:
/**
* TODO broker processor拉取对应消息的核心代码
* 同样的写法 上层做了异步的CompletableFuture,真正拉取的地方在 @see DefaultMessageStore#getMessage
*/
messageStore.getMessageAsync(group, topic, queueId, requestHeader.getQueueOffset(),
requestHeader.getMaxMsgNums(), messageFilter)
/**
* TODO broker根据持久化存储拉取文件的处理
* @return
*/
@Override
public GetMessageResult getMessage(final String group, final String topic, final int queueId, final long offset,
final int maxMsgNums, final int maxTotalMsgSize, final MessageFilter messageFilter) {
//判断当前状态
if (this.shutdown) {
LOGGER.warn("message store has shutdown, so getMessage is forbidden");
return null;
} if (!this.runningFlags.isReadable()) {
LOGGER.warn("message store is not readable, so getMessage is forbidden " + this.runningFlags.getFlagBits());
return null;
} Optional<TopicConfig> topicConfig = getTopicConfig(topic);
CleanupPolicy policy = CleanupPolicyUtils.getDeletePolicy(topicConfig);
//check request topic flag
//操作标记是过期清理,则通过compactionStore.getMessage获取消息
if (Objects.equals(policy, CleanupPolicy.COMPACTION) && messageStoreConfig.isEnableCompaction()) {
return compactionStore.getMessage(group, topic, queueId, offset, maxMsgNums, maxTotalMsgSize);
} // else skip long beginTime = this.getSystemClock().now(); GetMessageStatus status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
long nextBeginOffset = offset;
long minOffset = 0;
long maxOffset = 0; GetMessageResult getResult = new GetMessageResult(); //获取当前最大消费进度
final long maxOffsetPy = this.commitLog.getMaxOffset(); //TODO 获取消费队列信息
ConsumeQueueInterface consumeQueue = findConsumeQueue(topic, queueId);
if (consumeQueue != null) {
minOffset = consumeQueue.getMinOffsetInQueue();
maxOffset = consumeQueue.getMaxOffsetInQueue(); if (maxOffset == 0) {
//offSet一直没有东西或者没有被消费过,那么将下一个初始的消费设置成0
status = GetMessageStatus.NO_MESSAGE_IN_QUEUE;
nextBeginOffset = nextOffsetCorrection(offset, 0);
} else if (offset < minOffset) {
//如果当前消费点位比最小的还小,那么它就是最小的
status = GetMessageStatus.OFFSET_TOO_SMALL;
nextBeginOffset = nextOffsetCorrection(offset, minOffset);
} else if (offset == maxOffset) {
//如果当前消费点位跟最大的相同
status = GetMessageStatus.OFFSET_OVERFLOW_ONE;
nextBeginOffset = nextOffsetCorrection(offset, offset);
} else if (offset > maxOffset) {
//如果当前消费点位已经比最大的还大了
status = GetMessageStatus.OFFSET_OVERFLOW_BADLY;
nextBeginOffset = nextOffsetCorrection(offset, maxOffset);
} else {
//当前消费点位在最大和最小的之间
//一次拉取过滤的最大消息数量
final int maxFilterMessageSize = Math.max(16000, maxMsgNums * consumeQueue.getUnitSize());
final boolean diskFallRecorded = this.messageStoreConfig.isDiskFallRecorded(); //设置一次拉取最大的消息数量
long maxPullSize = Math.max(maxTotalMsgSize, 100);
if (maxPullSize > MAX_PULL_MSG_SIZE) {
LOGGER.warn("The max pull size is too large maxPullSize={} topic={} queueId={}", maxPullSize, topic, queueId);
maxPullSize = MAX_PULL_MSG_SIZE;
}
status = GetMessageStatus.NO_MATCHED_MESSAGE;
long maxPhyOffsetPulling = 0;
int cqFileNum = 0; while (getResult.getBufferTotalSize() <= 0
&& nextBeginOffset < maxOffset
&& cqFileNum++ < this.messageStoreConfig.getTravelCqFileNumWhenGetMessage()) {
//根据当前指定的点位进行过滤 nextBeginOffset就是这次需要从哪里开始拉
ReferredIterator<CqUnit> bufferConsumeQueue = consumeQueue.iterateFrom(nextBeginOffset); if (bufferConsumeQueue == null) {
status = GetMessageStatus.OFFSET_FOUND_NULL;
nextBeginOffset = nextOffsetCorrection(nextBeginOffset, this.consumeQueueStore.rollNextFile(consumeQueue, nextBeginOffset));
LOGGER.warn("consumer request topic: " + topic + "offset: " + offset + " minOffset: " + minOffset + " maxOffset: "
+ maxOffset + ", but access logic queue failed. Correct nextBeginOffset to " + nextBeginOffset);
break;
} try {
long nextPhyFileStartOffset = Long.MIN_VALUE;
/**
* 当前拉取的点位小于最大的消费点位时,进行拉取
*/
while (bufferConsumeQueue.hasNext()
&& nextBeginOffset < maxOffset) {
CqUnit cqUnit = bufferConsumeQueue.next();
//计算出消息在commitlog中存储的位置
long offsetPy = cqUnit.getPos();
//计算出消息在commitlog中存储的大小
int sizePy = cqUnit.getSize(); //按照偏移量估算出提交的内存
boolean isInMem = estimateInMemByCommitOffset(offsetPy, maxOffsetPy); //如果当前大小已经超过指定过滤的大小,则不做处理 默认大小是16000
if ((cqUnit.getQueueOffset() - offset) * consumeQueue.getUnitSize() > maxFilterMessageSize) {
break;
} //判断是否已经满了
if (this.isTheBatchFull(sizePy, cqUnit.getBatchNum(), maxMsgNums, maxPullSize, getResult.getBufferTotalSize(), getResult.getMessageCount(), isInMem)) {
break;
} if (getResult.getBufferTotalSize() >= maxPullSize) {
break;
} maxPhyOffsetPulling = offsetPy; //Be careful, here should before the isTheBatchFull
nextBeginOffset = cqUnit.getQueueOffset() + cqUnit.getBatchNum(); if (nextPhyFileStartOffset != Long.MIN_VALUE) {
if (offsetPy < nextPhyFileStartOffset) {
continue;
}
} /**
* 根据过滤器过滤消息
*/
if (messageFilter != null
&& !messageFilter.isMatchedByConsumeQueue(cqUnit.getValidTagsCodeAsLong(), cqUnit.getCqExtUnit())) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.NO_MATCHED_MESSAGE;
} continue;
} /**
* 根据消费点位拉取到对应的消息流
*/
SelectMappedBufferResult selectResult = this.commitLog.getMessage(offsetPy, sizePy);
if (null == selectResult) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.MESSAGE_WAS_REMOVING;
} nextPhyFileStartOffset = this.commitLog.rollNextFile(offsetPy);
continue;
} //消息过滤
if (messageFilter != null
&& !messageFilter.isMatchedByCommitLog(selectResult.getByteBuffer().slice(), null)) {
if (getResult.getBufferTotalSize() == 0) {
status = GetMessageStatus.NO_MATCHED_MESSAGE;
}
// release...
selectResult.release();
continue;
}
//填充拉取到的消息
this.storeStatsService.getGetMessageTransferredMsgCount().add(cqUnit.getBatchNum());
getResult.addMessage(selectResult, cqUnit.getQueueOffset(), cqUnit.getBatchNum());
status = GetMessageStatus.FOUND;
nextPhyFileStartOffset = Long.MIN_VALUE;
}
} finally {
bufferConsumeQueue.release();
}
} if (diskFallRecorded) {
long fallBehind = maxOffsetPy - maxPhyOffsetPulling;
brokerStatsManager.recordDiskFallBehindSize(group, topic, queueId, fallBehind);
} long diff = maxOffsetPy - maxPhyOffsetPulling;
long memory = (long) (StoreUtil.TOTAL_PHYSICAL_MEMORY_SIZE
* (this.messageStoreConfig.getAccessMessageInMemoryMaxRatio() / 100.0));
getResult.setSuggestPullingFromSlave(diff > memory);
}
} else {
status = GetMessageStatus.NO_MATCHED_LOGIC_QUEUE;
nextBeginOffset = nextOffsetCorrection(offset, 0);
} //跟新本地成员变量统计信息
if (GetMessageStatus.FOUND == status) {
this.storeStatsService.getGetMessageTimesTotalFound().add(1);
} else {
this.storeStatsService.getGetMessageTimesTotalMiss().add(1);
}
long elapsedTime = this.getSystemClock().now() - beginTime;
this.storeStatsService.setGetMessageEntireTimeMax(elapsedTime); /**
* 如果这次没有拉到数据,则把对应的消费点位放进来返回
*/
// lazy init no data found.
if (getResult == null) {
getResult = new GetMessageResult(0);
} getResult.setStatus(status);
getResult.setNextBeginOffset(nextBeginOffset);
getResult.setMaxOffset(maxOffset);
getResult.setMinOffset(minOffset);
return getResult;
}
判断当前服务状态;
核心处理:获取当前消费的最大进度,最大消费进度就是当前消费的位置,根据当前消费节点和当前持有文件初始节点计算;
获取消费队列信息;
计算当前队列的消费位置最大最小位置,如果offset时0说明offSet一直没有东西或者没有被消费过,那么将下一个初始的消费设置成0;如果当前点位比最小的点位还小,那么它就是最小的点位;如果它刚好等于最大的点位,说明它消费超过了一个,如果它比最大消费点位还大,说明它的消费是错误的;如果它刚好在最大最小中间,那么要知道我这次最多能过滤多少消息, Math.max(16000, maxMsgNums * consumeQueue.getUnitSize()); 我也要知道我最多能拉取多少消息 Math.max(maxTotalMsgSize, 100); 这时根据要拉取的点位遍历拉取:
public SelectMappedBufferResult getMessage(final long offset, final int size) {
int mappedFileSize = this.defaultMessageStore.getMessageStoreConfig().getMappedFileSizeCommitLog();
MappedFile mappedFile = this.mappedFileQueue.findMappedFileByOffset(offset, offset == 0);
if (mappedFile != null) {
//获取到当前文件对应的位置,如果它小于1024 * 1024 * 1024 则就会在文件中顺序分配
int pos = (int) (offset % mappedFileSize);
return mappedFile.selectMappedBuffer(pos, size);
}
return null;
}
消费者消费
消费完成后,核心的处理逻辑在 ConsumeMessageConcurrentlyService.this.processConsumeResult中实现:
/**
* TODO 消费者完成后的处理
* @param status
* @param context
* @param consumeRequest
*/
public void processConsumeResult(
final ConsumeConcurrentlyStatus status,
final ConsumeConcurrentlyContext context,
final ConsumeRequest consumeRequest
) {
int ackIndex = context.getAckIndex(); if (consumeRequest.getMsgs().isEmpty())
return; /**
* 消费成功或失败的处理 默认ackIndex最大为Integer.max 这里需要计算一条消息或一批消息处理的偏移量
* 如果设置的ackIndex大于当前处理消息的长度,则ackIndex应该是size -1
*/
switch (status) {
case CONSUME_SUCCESS:
if (ackIndex >= consumeRequest.getMsgs().size()) {
ackIndex = consumeRequest.getMsgs().size() - 1;
}
int ok = ackIndex + 1;
int failed = consumeRequest.getMsgs().size() - ok;
//维护消息处理成功或失败的量
this.getConsumerStatsManager().incConsumeOKTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), ok);
this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(), failed);
break;
case RECONSUME_LATER:
ackIndex = -1;
this.getConsumerStatsManager().incConsumeFailedTPS(consumerGroup, consumeRequest.getMessageQueue().getTopic(),
consumeRequest.getMsgs().size());
break;
default:
break;
} /**
* 这里是针对消息重试的处理 广播模式是不需要消费重试的 所以不做任何处理
* 集群模式处理有一点不同的是:如果上文返回的是处理失败,那么ackIndex一定为-1 这时你重试的消息就是这个request下所有的消息,因为从0的下标开始到结束都需要重试
* 如果是批量消费,其实ackIndex设置的就是需要做重试的消息下标,那么上文 ackIndex = consumeRequest.getMsgs().size() - 1; 说明ackIndex是不会大于msgs最大数量的下标位置
*/
switch (this.defaultMQPushConsumer.getMessageModel()) {
case BROADCASTING:
for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) {
MessageExt msg = consumeRequest.getMsgs().get(i);
log.warn("BROADCASTING, the message consume failed, drop it, {}", msg.toString());
}
break;
case CLUSTERING:
List<MessageExt> msgBackFailed = new ArrayList<>(consumeRequest.getMsgs().size());
for (int i = ackIndex + 1; i < consumeRequest.getMsgs().size(); i++) {
MessageExt msg = consumeRequest.getMsgs().get(i);
// Maybe message is expired and cleaned, just ignore it.
if (!consumeRequest.getProcessQueue().containsMessage(msg)) {
log.info("Message is not found in its process queue; skip send-back-procedure, topic={}, "
+ "brokerName={}, queueId={}, queueOffset={}", msg.getTopic(), msg.getBrokerName(),
msg.getQueueId(), msg.getQueueOffset());
continue;
}
/**
* 针对需要重试的消息,将消息发送sendMessageBack 并且将消息设置重试次数
*/
boolean result = this.sendMessageBack(msg, context);
if (!result) {
msg.setReconsumeTimes(msg.getReconsumeTimes() + 1);
msgBackFailed.add(msg);
}
} /**
* 将所有重试的消息进行回退,然后对成功处理的消息做进一步提交
*/
if (!msgBackFailed.isEmpty()) {
consumeRequest.getMsgs().removeAll(msgBackFailed); this.submitConsumeRequestLater(msgBackFailed, consumeRequest.getProcessQueue(), consumeRequest.getMessageQueue());
}
break;
default:
break;
} /**
* 计算处理的offSet偏移量 这里consumeRequest已经是成功处理的消息集合
*/
long offset = consumeRequest.getProcessQueue().removeMessage(consumeRequest.getMsgs());
if (offset >= 0 && !consumeRequest.getProcessQueue().isDropped()) {
//更新消费节点 广播是通过本地处理 集群是通过更新broker消费节点
this.defaultMQPushConsumerImpl.getOffsetStore().updateOffset(consumeRequest.getMessageQueue(), offset, true);
}
}
如果消费完成,通过messageListener回调,封装了一层返回状态:如果消费成功,则需要处理ackIndex的数据。如果是单条消费,那么ack最多只有一个,如果是多条消费,那么ack的数量应该是msg.size - 1最大,那么先在本地变量保存一下当前处理的数量。
然后是核心处理的能力:如果是广播消息,因为广播消息是不会重试的,所以无法再做任何处理,打个日志完事了;如果是集群消息,并且ackIndex返回了-1,那么这个消息一定是失败了,那么就需要走sendBack,通知broker将消息扔到重试队列里去,然后将消息的重试次数+1;
对于已经成功的消息,我们需要更新掉它的偏移量,通过updateOffSet进行更新,同样区分更新方式,localFile其实更新的是本地的广播消费进度,remote是集群更新进度,集群的消费进度保存再broker中,但是其实这里都是更新了本地的offSetTable,其实在broker中会根据后续的动作会将offSet同步到broker中进行记录,这样新的消费实例就可以从broker保存的offset进行消费:
/** TODO 消费同步模式 重要
* 集群消费更新节点 其实可以看出在这里不管广播还是集群都是存储在了offsetTable中,其实会在后续推送到broker进行保存的
* 这里有个误区,我们知道集群模式 一个queue会对应到一个消费者进行消费 一个消费者可以绑定多个队列进行pull 如果这里不存在rebalance时,这个消费者不会变化,它延后在注册心跳同步offSet是完全没有问题的
* 但是如果这里触发了rebalance,这个消息可能在消费没来得及相应的情况下 进行了消费重排,这时这个队列在这个消费者下可能就是isDrop,但是新的消费者拉取消息时不会从当前的点位消费,而是从上一次成功提交
* 的点位进行消费!
* 当前保存的点位信息可能在同步或拉取时推送给broker
* @see RemoteBrokerOffsetStore#persistAll(Set)
* 在拉取时也会将当前的消费点位传入broker
* @see org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage(PullRequest)
*/
@Override
public void updateOffset(MessageQueue mq, long offset, boolean increaseOnly) {
if (mq != null) {
AtomicLong offsetOld = this.offsetTable.get(mq);
if (null == offsetOld) {
offsetOld = this.offsetTable.putIfAbsent(mq, new AtomicLong(offset));
} if (null != offsetOld) {
if (increaseOnly) {
MixAll.compareAndIncreaseOnly(offsetOld, offset);
} else {
offsetOld.set(offset);
}
}
}
}
它会根据另一个异步线程池定时将目前最新的 offset同步给broker。
index索引持久化
在消息经过持久化进入commitlog后,相应的store也会对持久化的消息进行索引保存:在 ReputMessageService中:
public void run() {
DefaultMessageStore.LOGGER.info(this.getServiceName() + " service started"); while (!this.isStopped()) {
try {
Thread.sleep(1);
this.doReput();
} catch (Exception e) {
DefaultMessageStore.LOGGER.warn(this.getServiceName() + " service has exception. ", e);
}
} DefaultMessageStore.LOGGER.info(this.getServiceName() + " service end");
}
其中核心的操作就是doReput,它就是对index文件创建刷盘并给commitlog的消息创建索引的过程:
/**
* 自旋线程执行的方法
*/
private void doReput() {
if (this.reputFromOffset < DefaultMessageStore.this.commitLog.getMinOffset()) {
LOGGER.warn("The reputFromOffset={} is smaller than minPyOffset={}, this usually indicate that the dispatch behind too much and the commitlog has expired.",
this.reputFromOffset, DefaultMessageStore.this.commitLog.getMinOffset());
this.reputFromOffset = DefaultMessageStore.this.commitLog.getMinOffset();
}
for (boolean doNext = true; this.isCommitLogAvailable() && doNext; ) { //从commitlog中获取reput的offset对应的消息列表
SelectMappedBufferResult result = DefaultMessageStore.this.commitLog.getData(reputFromOffset); if (result == null) {
break;
} try {
this.reputFromOffset = result.getStartOffset(); //将对应的每条消息都封装成dispatchRequest
for (int readSize = 0; readSize < result.getSize() && reputFromOffset < DefaultMessageStore.this.getConfirmOffset() && doNext; ) {
DispatchRequest dispatchRequest =
DefaultMessageStore.this.commitLog.checkMessageAndReturnSize(result.getByteBuffer(), false, false, false);
int size = dispatchRequest.getBufferSize() == -1 ? dispatchRequest.getMsgSize() : dispatchRequest.getBufferSize(); if (reputFromOffset + size > DefaultMessageStore.this.getConfirmOffset()) {
doNext = false;
break;
} if (dispatchRequest.isSuccess()) {
if (size > 0) {
//如果dispatchRequest校验成功,消息检查成功,则执行doDispatch
DefaultMessageStore.this.doDispatch(dispatchRequest); if (DefaultMessageStore.this.brokerConfig.isLongPollingEnable()
&& DefaultMessageStore.this.messageArrivingListener != null) {
DefaultMessageStore.this.messageArrivingListener.arriving(dispatchRequest.getTopic(),
dispatchRequest.getQueueId(), dispatchRequest.getConsumeQueueOffset() + 1,
dispatchRequest.getTagsCode(), dispatchRequest.getStoreTimestamp(),
dispatchRequest.getBitMap(), dispatchRequest.getPropertiesMap());
notifyMessageArrive4MultiQueue(dispatchRequest);
} this.reputFromOffset += size;
readSize += size;
if (!DefaultMessageStore.this.getMessageStoreConfig().isDuplicationEnable() &&
DefaultMessageStore.this.getMessageStoreConfig().getBrokerRole() == BrokerRole.SLAVE) {
DefaultMessageStore.this.storeStatsService
.getSinglePutMessageTopicTimesTotal(dispatchRequest.getTopic()).add(dispatchRequest.getBatchSize());
DefaultMessageStore.this.storeStatsService
.getSinglePutMessageTopicSizeTotal(dispatchRequest.getTopic())
.add(dispatchRequest.getMsgSize());
}
} else if (size == 0) {
this.reputFromOffset = DefaultMessageStore.this.commitLog.rollNextFile(this.reputFromOffset);
readSize = result.getSize();
}
} else {
if (size > 0) {
LOGGER.error("[BUG]read total count not equals msg total size. reputFromOffset={}", reputFromOffset);
this.reputFromOffset += size;
} else {
doNext = false;
// If user open the dledger pattern or the broker is master node,
// it will not ignore the exception and fix the reputFromOffset variable
if (DefaultMessageStore.this.getMessageStoreConfig().isEnableDLegerCommitLog() ||
DefaultMessageStore.this.brokerConfig.getBrokerId() == MixAll.MASTER_ID) {
LOGGER.error("[BUG]dispatch message to consume queue error, COMMITLOG OFFSET: {}",
this.reputFromOffset);
this.reputFromOffset += result.getSize() - readSize;
}
}
}
}
} finally {
result.release();
}
}
}
它根据reputOffset向commitlog拉取对应的消息列表,然后将这批消息进行批量构建索引,会将符合条件的所有的消息每个生成一个 DispatchRequest:
核心的动作就是:
/**
* TODO 构建index索引并根据commitlog持久化消息处理核心代码
*/
class CommitLogDispatcherBuildIndex implements CommitLogDispatcher { @Override
public void dispatch(DispatchRequest request) {
if (DefaultMessageStore.this.messageStoreConfig.isMessageIndexEnable()) {
//构建index索引
DefaultMessageStore.this.indexService.buildIndex(request);
}
}
}
首先,获取对应的indexFile文件
public void buildIndex(DispatchRequest req) {
//尝试获取索引文件
IndexFile indexFile = retryGetAndCreateIndexFile();
if (indexFile != null) {
long endPhyOffset = indexFile.getEndPhyOffset();
DispatchRequest msg = req;
String topic = msg.getTopic();
String keys = msg.getKeys();
//索引是根据commitlog的offset构建的,如果当前的消息小于当前已经构建的最大点位,则认为它是重复的消息
if (msg.getCommitLogOffset() < endPhyOffset) {
return;
} final int tranType = MessageSysFlag.getTransactionValue(msg.getSysFlag());
switch (tranType) {
case MessageSysFlag.TRANSACTION_NOT_TYPE:
case MessageSysFlag.TRANSACTION_PREPARED_TYPE:
case MessageSysFlag.TRANSACTION_COMMIT_TYPE:
break;
case MessageSysFlag.TRANSACTION_ROLLBACK_TYPE:
return;
} /**
* 生成索引
*/
if (req.getUniqKey() != null) {
indexFile = putKey(indexFile, msg, buildKey(topic, req.getUniqKey()));
if (indexFile == null) {
LOGGER.error("putKey error commitlog {} uniqkey {}", req.getCommitLogOffset(), req.getUniqKey());
return;
}
} if (keys != null && keys.length() > 0) {
String[] keyset = keys.split(MessageConst.KEY_SEPARATOR);
for (int i = 0; i < keyset.length; i++) {
String key = keyset[i];
if (key.length() > 0) {
indexFile = putKey(indexFile, msg, buildKey(topic, key));
if (indexFile == null) {
LOGGER.error("putKey error commitlog {} uniqkey {}", req.getCommitLogOffset(), req.getUniqKey());
return;
}
}
}
}
} else {
LOGGER.error("build index error, stop building index");
}
}
更新索引文件后,会对每次最后一次更新的 时间戳进行index下的文件重命名。
根据key进行消息查找,通过index文件:
/**
* TODO 根据索引key查找消息的核心代码
* @return
*/
@Override
public QueryMessageResult queryMessage(String topic, String key, int maxNum, long begin, long end) {
QueryMessageResult queryMessageResult = new QueryMessageResult(); long lastQueryMsgTime = end; for (int i = 0; i < 3; i++) {
//获取 IndexFile 索引文件中记录的消息在 CommitLog 文件物理偏移地址
QueryOffsetResult queryOffsetResult = this.indexService.queryOffset(topic, key, maxNum, begin, lastQueryMsgTime);
if (queryOffsetResult.getPhyOffsets().isEmpty()) {
break;
} //排序 根据消费进度
Collections.sort(queryOffsetResult.getPhyOffsets()); queryMessageResult.setIndexLastUpdatePhyoffset(queryOffsetResult.getIndexLastUpdatePhyoffset());
queryMessageResult.setIndexLastUpdateTimestamp(queryOffsetResult.getIndexLastUpdateTimestamp()); for (int m = 0; m < queryOffsetResult.getPhyOffsets().size(); m++) {
long offset = queryOffsetResult.getPhyOffsets().get(m); try {
MessageExt msg = this.lookMessageByOffset(offset);
if (0 == m) {
lastQueryMsgTime = msg.getStoreTimestamp();
} //根据消费点位在commitlog中查找
SelectMappedBufferResult result = this.commitLog.getData(offset, false);
if (result != null) {
int size = result.getByteBuffer().getInt(0);
result.getByteBuffer().limit(size);
result.setSize(size);
queryMessageResult.addMessage(result);
}
} catch (Exception e) {
LOGGER.error("queryMessage exception", e);
}
} if (queryMessageResult.getBufferTotalSize() > 0) {
break;
} if (lastQueryMsgTime < begin) {
break;
}
} return queryMessageResult;
}
关于零拷贝
了解零拷贝之前,我们先来了解一下常规的一次IO读取会经历哪些事情
由于JVM本身不能操作内核,所以jvm进行一次IO时,会有一次内核的切换,DMA拷贝将内容拷贝到读取缓冲区中,再将内核切换为用户进程,再把内容拷贝到应用缓冲区中;
发送同理,会先将内容通过CPU拷贝到套接字缓冲区中,再通过内核将套接字缓冲的内容通过DMA发送到网卡。这一共需要经历4次拷贝。
mmap的零拷贝,采用的是将磁盘的内容直接拷贝到内核缓冲区,内核缓冲区可以看做一个虚拟内存,所以是3次拷贝。
sendfile的零拷贝,采用的是将内核缓冲区直接拷贝到网卡去,所以是两次拷贝。(rocket采用的是mmap,kfaka采用的是sendfile)
使用mmap+write方式(rocket)
优点:即使频繁调用,使用小文件块传输,效率也很高
缺点:不能很好的利用DMA方式,会比sendfile多消耗CPU资源,内存安全性控制复杂,需要避免JVM Crash问题
使用sendfile方式(kfaka)
优点:可以利用DMA方式,消耗CPU资源少,大块文件传输效率高,无内存安全新问题
缺点:小块文件效率低于mmap方式,只能是BIO方式传输,不能使用NIO
看一个实例:
ServerSocket serverSocket = new ServerSocket(8999);
while (true){
Socket socket = serverSocket.accept();
DataInputStream dataInputStream = new DataInputStream(socket.getInputStream());
AtomicInteger integer = new AtomicInteger(0);
try {
byte[] buffer = new byte[1024];
while (true){
int read = dataInputStream.read(buffer, 0, buffer.length);
integer.addAndGet(read);
if (read == -1){
System.out.println("接收:" + integer.get());
integer = null;
break;
}
}
} catch (IOException e) {
e.printStackTrace();
}
Socket socket = new Socket("localhost", 8999);
String fileName = "E://workSpace//store.log";//37.8 MB (39,703,524 字节)
InputStream inputStream = new FileInputStream(fileName);
DataOutputStream dataOutputStream = new DataOutputStream(socket.getOutputStream());
try {
byte[] buffer = new byte[1024];
Integer read, total = 0;
long time = System.currentTimeMillis();
while ((read = inputStream.read(buffer)) > 0){
total += read;
dataOutputStream.write(buffer);
}
long end = System.currentTimeMillis();
System.out.println("发送" + total + ",用时:" + ((end - time) ));
} finally {
dataOutputStream.close();
socket.close();
inputStream.close();
}
SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("localhost", 8999));
socketChannel.configureBlocking(true);
String fileName = "E://workSpace//store.log";//37.8 MB (39,703,524 字节)
FileChannel fileChannel = null;
try {
fileChannel = new FileInputStream(fileName).getChannel();
long size = fileChannel.size();
long position = 0;
long total = 0;
long timeMillis = System.currentTimeMillis();
while (position < size) {
long currentNum = fileChannel.transferTo(position, fileChannel.size(), socketChannel);
if (currentNum <= 0) {
break;
}
total += currentNum;
position += currentNum;
}
long timeMillis1 = System.currentTimeMillis();
System.out.println("发送:" + total + ",用时:"+ (timeMillis1 - timeMillis) );
} finally {
fileChannel.close();
socketChannel.close();
}
上面提供了两种方式,传统的IO读写和mmap的读写,基于socket发送数据
会发现,零拷贝的方式比传统的方式从读取到发送快了百分之70 -80左右
所以,如果你需要优化网络传输的性能,或者文件读写的速度,请尽量使用零拷贝。它不仅能较少复制拷贝次数,还能较少上下文切换。
【打怪升级】【rocketMq】rocket的持久化的更多相关文章
- SDUT oj 3005 打怪升级(内存搜索)
当比赛一直纠缠骑2如何做一个非常大的数量,数组不开啊...后来他们发现自己很傻啊,该数不超过最大10什么,这个上限就是力量100什么.. .. 其它的就是记忆化搜索啊,还有就是加一点力量的瓶子当时就要 ...
- Flask连接数据库打怪升级之旅
一.前言 在初学 Flask 的时候,在数据库连接这部分也跟每个初学者一样.但是随着工作中项目接手的多了,代码写的多了,历练的多了也就有了自己的经验和技巧.在对这块儿代码不断的进行升级改造后,整理了在 ...
- 从苦逼到牛逼,详解Linux运维工程师的打怪升级之路
做运维也快四年多了,就像游戏打怪升级,升级后知识体系和运维体系也相对变化挺大,学习了很多新的知识点. 运维工程师是从一个呆逼进化为苦逼再成长为牛逼的过程,前提在于你要能忍能干能拼,还要具有敏锐的嗅觉感 ...
- 运维工程师打怪升级进阶之路 V2.0
在此之前,发布过两个版本: 运维工程师打怪升级之路 V1.0 版本发布 运维工程师打怪升级必经之路 V1.0.1 很多读者伙伴们反应总结的很系统.很全面,无论是0基础初学者,还是有基础的入门者,或者是 ...
- 1255: 打怪升级(Java)
WUSTOJ 1255: 打怪升级 Description 对于多数RPG游戏来说,除了剧情就是打怪升级.本题的任务是用最短的时间取得所有战斗的胜利.这些战斗必须按照特定的顺序进行,每打赢一场,都可能 ...
- 20190528-JavaScriptの打怪升级旅行 { 语句 [ 赋值 ,数据 ] }
写在前面的乱七八糟:今天考了试,emmm很基础的题,还是Mrs房的面试题让人绝望啊┓( ´∀` )┏,补了很多知识,很综合的题,坑也很多,总的来说,查漏补缺,其实是啥都缺~ 今天打的小BOSS主要是数 ...
- Oracle打怪升级之路二【视图、序列、游标、索引、存储过程、触发器】
前言 在之前 <Oracle打怪升级之路一>中我们主要介绍了Oracle的基础和Oracle常用查询及函数,这篇文章作为补充,主要介绍Oracle的对象,视图.序列.同义词.索引等,以及P ...
- 沧桑巨变中焕发青春活力-记极1s HC5661A 打怪升级之路
最近发现一个新货umaxhosting年付10美元的便宜VPS.2杯喜茶的价格可以让你在国外拥有一个1024MB (1GB) DDR3 RAM.1024MB (1GB) vSwap.70GB RAID ...
- Harbor打怪升级
目录 一.目标 二.V1.4升级至V1.6 三.V1.6升级至V1.9 四.V1.9升级至V2.0 五.写在最后 一.目标 Harbor V1.4版本升级至V2.0 注: Harbor升级需要注意的是 ...
- “奥特曼攻打小怪兽”java学习打怪升级第一步
---恢复内容开始--- 练习:回合制对战游戏:奥特曼和小怪兽进行PK,直到一方的血量为0时结束战斗,输出谁胜利了! 不难看出场景中有两个对象:”奥特曼“这一对象抽象为”Ao"类: ...
随机推荐
- linux用户账户与组账户,文件权限及归属管理
Linux是一个多用户, 多任务多进程的服务器操作系统 用户角色:超级用户(管理员),普通用户,程序用户 用户账号管理用户账号概述用户:使用者在计算机内部的身份标识 用户账号的常见分类:超级用户: r ...
- 接口自动化-pycharm下查看日志文件中文乱码
如图: 方法:pycharm 进入setting,找到File Encodings将编码全部设置gbk 现在室这样的: 修改为: 再次看日志:
- 保护IIS Web服务器安全的技巧
首先,开发一套安全策略 保护Web服务器的第一步是确保网络管理员清楚安全策略中的每一项制度.如果公司高层没有把服务器的安全看作是必须被保护的资产,那么保护工作是完全没有意义的.这项工作需要长期的努力. ...
- 什么是压测,为什么要进行压力测试?Jmeter工具的使用
1.背景介绍 什么是压测? 压力测试是通过不断向被测系统施加"压力",测试系统在压力情况下的性能表现,考察当前软硬件环境下系统所能承受的最大负荷并帮助找出系统瓶颈所在,也就是我们可 ...
- nmap扫描
Nmap扫描 学习老师发的链接中的指令:https://www.cnblogs.com/nmap/p/6232207.html 下载了nmap软件 根据教学中的操作查找虚拟机的IP地址 并用主机对其扫 ...
- ELK收集njinx
前提:安装elk 1.yum安装nginx 2.修改配置文件 vim /etc/nginx/nginx.conf.d 3.重新启动 nginx -s reload 4.安装压测命令 压测文件 5.写完 ...
- Git、GitHub、GitLab三者之间的区别
1.Git Git是一个版本控制系统. 版本控制是一种用于记录一个或多个文件内容变化,方便我们查阅特定版本修订情况的系统. 总结: (1)分布式版本控制系统下的本地仓库包含代码库还有历史库,在本地就可 ...
- vue+element el-table有关Checkbox的一些功能
在做项目的时候会碰到一些表格操作的问题其中我归整了一下有关于多选功能的一些记录 一:默认选中其中一行 <el-table class="editTable" :data=&q ...
- 后台http请求
HttpResponse response = HttpContext.Current.Response; response.Buffer = true; response.Clear(); resp ...
- vim多行缩进
1.首先设置vim缩进空格 vim /etc/vim/vimrc 或者vim /etc/vimrc,添加一下文字 set smartindent set shiftwidth=4 # 缩进四个空格 # ...