重新认识下JVM级别的本地缓存框架Guava Cache——优秀从何而来
大家好,又见面了。
本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面。如果感兴趣,欢迎关注以获取后续更新。
不知不觉,这已经是《深入理解缓存原理与实战设计》系列专栏的第6篇文章了。经过前面5篇文章的铺垫,我们系统且全面的介绍了缓存相关的概念与典型问题,也手动实操了如何构建一个本地最简版本的通用缓存框架,还对JAVA主流的本地缓存规范进行了解读。
秉持着不重复造轮子的理念,本篇文章中,我们就来一起深入剖析JAVA本地缓存的优秀“轮子” —— 来自Google家族的Guava Cache
。聊一聊其实现机制、看一看如何使用。
Guava Cache初识
Guava是Google提供的一套JAVA的工具包,而Guava Cache
则是该工具包中提供的一套完善的JVM级别的高并发缓存框架。其实现机制类似ConcurrentHashMap,但是进行了众多的封装与能力扩展。作为JVM级别的本地缓存框架,Guava Cache
具备缓存框架该有的众多基础特性。当然,Guava Cache能从众多本地缓存类产品中脱颖而出,除了具备上述基础缓存特性外,还有众多贴心的能力增强,绝对算得上是工具包届的超级暖男!为什么这么说呢?我们一起看下Guava Cache的能力介绍,应该可以有所体会。
支持缓存记录的过期设定
作为一个合格的缓存容器,支持缓存记录过期是一个基础能力。Guava Cache
不但支持设定过期时间,还支持选择是根据插入时间
进行过期处理(创建过期)、或者是根据最后访问时间
进行过期处理(访问过期)。
过期策略 | 具体说明 |
---|---|
创建过期 | 基于缓存记录的插入时间判断。比如设定10分钟过期,则记录加入缓存之后,不管有没有访问,10分钟时间到则 |
访问过期 | 基于最后一次的访问时间来判断是否过期。比如设定10分钟过期,如果缓存记录被访问到,则以最后一次访问时间重新计时;只有连续10分钟没有被访问的时候才会过期,否则将一直存在缓存中不会被过期。 |
实际使用的时候,可以在创建缓存容器的时候指定过期策略即可:
- 基于创建时间过期
public Cache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.expireAfterWrite(30L, TimeUnit.MINUTES)
.build();
}
- 基于访问时间过期
public Cache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.expireAfterAccess(30L, TimeUnit.MINUTES)
.build();
}
是不是很方便?
支持缓存容量限制与不同淘汰策略
作为内存型缓存,必须要防止出现内存溢出的风险。Guava Cache支持设定缓存容器的最大存储上限,并支持根据缓存记录条数
或者基于每条缓存记录的权重
(后面会具体介绍)进行判断是否达到容量阈值。
当容量触达阈值后,支持根据FIFO + LRU
策略实施具体淘汰处理以腾出位置给新的记录使用。
淘汰策略 | 具体说明 |
---|---|
FIFO | 根据缓存记录写入的顺序,先写入的先淘汰 |
LRU | 根据访问顺序,淘汰最久没有访问的记录 |
实际使用的时候,同样是在创建缓存容器的时候指定容量上限与淘汰策略,这样就可以放心大胆的使用而不用担心内存溢出问题咯。
- 限制缓存记录条数
public Cache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.maximumSize(10000L)
.build();
}
- 限制缓存记录权重
public Cache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.maximumWeight(10000L)
.weigher((key, value) -> (int) Math.ceil(instrumentation.getObjectSize(value) / 1024L))
.build();
}
这里需要注意:按照权重进行限制缓存容量的时候必须要指定weighter
属性才可以生效。上面代码中我们通过计算value
对象的字节数(byte)来计算其权重信息,每1kb的字节数作为1个权重,整个缓存容器的总权重限制为1w,这样就可以实现将缓存内存占用控制在10000*1k≈10M
左右。
有没有很省心?
支持集成数据源能力
在前面文章中,我们有介绍过缓存的三种模型,分别是旁路型
、穿透型
、异步型
。Guava Cache作为一个封装好的缓存框架,是一个典型的穿透型缓存。正常业务使用缓存时通常会使用旁路型缓存,即先去缓存中尝试查询获取数据,如果获取不到则会从数据库中进行查询并加入到缓存中;而为了简化业务端使用复杂度,Guava Cache支持集成数据源,业务层面调用接口查询缓存数据的时候,如果缓存数据不存在,则会自动去数据源中进行数据获取并加入缓存中。
public User findUser(Cache<String, User> cache, String userId) {
try {
return cache.get(userId, () -> {
System.out.println(userId + "用户缓存不存在,尝试回源查找并回填...");
return userDao.getUser(userId);
});
} catch (ExecutionException e) {
e.printStackTrace();
}
return null;
}
实际使用的时候如果查询的用户不存在,则会自动去回源查找并写入缓存里,再次获取的时候便可以从缓存直接获取:
上面的方法里,是通过在get方法里传入Callable
实现的方式指定回源获取数据的方式,来实现缓存不存在情况的自动数据拉取与回填到缓存中的。实际使用的时候,除了Callable方式,还有一种CacheLoader
的模式,也可以实现这一效果。
需要我们在创建缓存容器的时候声明容器为LoadingCache类型(下面的章节中有介绍),并且指定CacheLoader
处理逻辑:
public LoadingCache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.build(new CacheLoader<String, User>() {
@Override
public User load(String key) throws Exception {
System.out.println(key + "用户缓存不存在,尝试CacheLoader回源查找并回填...");
return userDao.getUser(key);
}
});
}
这样,获取不到数据的时候,也会自动回源查询并填充。比如我们执行如下调用逻辑:
public static void main(String[] args) {
CacheService cacheService = new CacheService();
LoadingCache<String, User> cache = cacheService.createUserCache();
try {
System.out.println(cache.get("123"));
System.out.println(cache.get("124"));
System.out.println(cache.get("123"));
} catch (Exception e) {
e.printStackTrace();
}
}
执行结果如下:
123用户缓存不存在,尝试CacheLoader回源查找并回填...
User(userId=123, userName=铁柱, department=研发部)
124用户缓存不存在,尝试CacheLoader回源查找并回填...
User(userId=124, userName=翠花, department=测试部)
User(userId=123, userName=铁柱, department=研发部)
两种方式都可以实现这一效果,实际可以根据需要与场景选择合适的方式。
当然,有些时候,可能也会涉及到CacheLoader
与Callable
两种方式结合使用的场景,这种情况下优先会执行Callable提供的逻辑,Callable缺失的场景会使用CacheLoader提供的逻辑。
public static void main(String[] args) {
CacheService cacheService = new CacheService();
LoadingCache<String, User> cache = cacheService.createUserCache();
try {
System.out.println(cache.get("123", () -> new User("xxx")));
System.out.println(cache.get("124"));
System.out.println(cache.get("123"));
} catch (Exception e) {
e.printStackTrace();
}
}
执行后,可以看出Callable逻辑被优先执行,而CacheLoader作为兜底策略存在:
User(userId=xxx, userName=null, department=null)
124用户缓存不存在,尝试CacheLoader回源查找并回填...
User(userId=124, userName=翠花, department=测试部)
User(userId=xxx, userName=null, department=null)
支持更新锁定能力
这个是与上面数据源集成一起的辅助增强能力。在高并发场景下,如果某个key值没有命中缓存,大量的请求同步打到下游模块处理的时候,很容易造成缓存击穿问题。
为了防止缓存击穿问题,可以通过加锁的方式来规避。当缓存不可用时,仅持锁的线程
负责从数据库中查询数据并写入缓存中,其余请求重试时先尝试从缓存中获取数据,避免所有的并发请求全部同时打到数据库上。
作为穿透型缓存的保护策略之一,Guava Cache自带了并发锁定
机制,同一时刻仅允许一个请求去回源获取数据并回填到缓存中,而其余请求则阻塞等待,不会造成数据源的压力过大。
有没有被暖心到?
提供了缓存相关的一些监控统计
引入缓存的一个初衷是希望缓存能够提升系统的处理性能,而有限缓存容量中仅存储部分数据的时候,我们会希望存储的有限数据可以尽可能的覆盖并抗住大部分的请求流量,所以对缓存的命中率会非常关注。
Guava Cache深知这一点,所以提供了stat
统计日志,支持查看缓存数据的加载或者命中情况统计。我们可以基于命中情况,不断的去优化代码中缓存的数据策略,以发挥出缓存的最大价值。
Guava Cache的统计信息封装为CacheStats
对象进行承载,主要包含一下几个关键指标项:
指标 | 含义说明 |
---|---|
hitCount | 命中缓存次数 |
missCount | 没有命中缓存次数(查询的时候内存中没有) |
loadSuccessCount | 回源加载的时候加载成功次数 |
loadExceptionCount | 回源加载但是加载失败的次数 |
totalLoadTime | 回源加载操作总耗时 |
evictionCount | 删除记录的次数 |
缓存容器创建的时候,可以通过recordStats()
开启缓存行为的统计记录:
public static void main(String[] args) {
LoadingCache<String, User> cache = CacheBuilder.newBuilder()
.recordStats()
.build(new CacheLoader<String, User>() {
@Override
public User load(String key) throws Exception {
System.out.println(key + "用户缓存不存在,尝试CacheLoader回源查找并回填...");
User user = userDao.getUser(key);
if (user == null) {
System.out.println(key + "用户不存在");
}
return user;
}
});
try {
System.out.println(cache.get("123");
System.out.println(cache.get("124"));
System.out.println(cache.get("123"));
System.out.println(cache.get("126"));
} catch (Exception e) {
} finally {
CacheStats stats = cache.stats();
System.out.println(stats);
}
}
上述代码执行之后结果输出如下:
123用户缓存不存在,尝试CacheLoader回源查找并回填...
User(userId=123, userName=铁柱, department=研发部)
124用户缓存不存在,尝试CacheLoader回源查找并回填...
User(userId=124, userName=翠花, department=测试部)
User(userId=123, userName=铁柱, department=研发部)
126用户缓存不存在,尝试CacheLoader回源查找并回填...
126用户不存在
CacheStats{hitCount=1, missCount=3, loadSuccessCount=2, loadExceptionCount=1, totalLoadTime=1972799, evictionCount=0}
可以看出,一共执行了4次请求,其中1次命中,3次回源处理,2次回源加载成功,1次回源没找到数据,与打印出来的CacheStats
统计结果完全吻合。
有着上述能力的加持,前面将Guava Cache称作“暖男”不过分吧?
Guava Cache适用场景
在本系列专栏的第一篇文章《聊一聊作为高并发系统基石之一的缓存,会用很简单,用好才是技术活》中,我们在缓存的一步步演进介绍中提过本地缓存与集中式缓存的区别,也聊了各自的优缺点。
作为一款纯粹的本地缓存框架,Guava Cache具备本地缓存该有的优势,也无可避免的存在着本地缓存的弊端。
维度 | 简要概述 |
---|---|
优势 | 基于空间换时间的策略,利用内存的高速处理效率,提升机器的处理性能,减少大量对外的IO请求交互,比如读取DB、请求外部网络、读取本地磁盘数据等等操作。 |
弊端 | 整体容量受限,可能对本机内存造成压力。此外,对于分布式多节点集群部署的场景,缓存更新场景会出现缓存漂移问题,导致各个节点之间的缓存数据不一致。 |
鉴于上述优劣综合判断,可以大致圈定Guava Cache
的实际适用场合:
- 数据读多写少且对一致性要求不高的场景
这类场景中,会将数据缓存到本地内存中,采用定时触发(或者事件推送)的策略重新加载到内存中。这样业务处理逻辑直接从内存读取需要的数据,修改系统配置项之后,需要等待一定的时间后方可生效。
很多的配置中心采用的都是这个缓存策略。统一配置中心中管理配置数据,然后各个业务节点会从统一配置中心拉取配置并存储在自己本地的内存中然后使用本地内存中的数据。这样可以有效规避配置中心的单点故障问题,降低了配置中心的请求压力,也提升了业务节点自身的业务处理性能(减少了与配置中心之间的网络交互请求)。
- 对性能要求极其严苛的场景
对于分布式系统而言,集中式缓存是一个常规场景中很好的选项。但是对于一些超大并发量且读性能要求严苛的系统而言,一个请求流程中需要频繁的去与Redis交互,其网络开销也是不可忍受的。所以可以采用将数据本机内存缓存的方式,分散redis的压力,降低对外请求交互的次数,提升接口响应速度。
- 简单的本地数据缓存,作为
HashMap/ConcurrentHashMap
的替代品
这种场景也很常见,我们在项目中经常会遇到一些数据的需要临时缓存一下,为了方便很多时候直接使用的HashMap
或者ConcurrentHashMap
来实现。而Guava Cache聚焦缓存场景做了很多额外的功能增强(比如数据过期能力支持、容量上限约束等),可以完美替换掉HashMap/ConcurrentHashMap,更适合缓存场景使用。
Guava Cache使用
引入依赖
使用Guava Cache,首先需要引入对应的依赖包。对于Maven项目,可以在pom.xml
中添加对应的依赖声明即可:
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>31.1-jre</version>
</dependency>
这样,就完成了依赖引入。
容器创建 —— CacheBuilder
具体使用前首先面临的就是如何创建Guava Cache实例。可以借助CacheBuilder
以一种优雅的方式来构建出合乎我们诉求的Cache实例。
对CacheBuilder中常见的属性方法,归纳说明如下:
方法 | 含义说明 |
---|---|
newBuilder | 构造出一个Builder实例类 |
initialCapacity | 待创建的缓存容器的初始容量大小(记录条数) |
maximumSize | 指定此缓存容器的最大容量(最大缓存记录条数) |
maximumWeight | 指定此缓存容器的最大容量(最大比重值),需结合weighter 方可体现出效果 |
expireAfterWrite | 设定过期策略,按照数据写入时间进行计算 |
expireAfterAccess | 设定过期策略,按照数据最后访问时间来计算 |
weighter | 入参为一个函数式接口,用于指定每条存入的缓存数据的权重占比情况。这个需要与maximumWeight 结合使用 |
refreshAfterWrite | 缓存写入到缓存之后 |
concurrencyLevel | 用于控制缓存的并发处理能力,同时支持多少个线程并发写入操作 |
recordStats | 设定开启此容器的数据加载与缓存命中情况统计 |
基于CacheBuilder
及其提供的各种方法,我们可以轻松的进行缓存容器的构建、并指定容器的各种约束条件。
比如下面这样:
public LoadingCache<String, User> createUserCache() {
return CacheBuilder.newBuilder()
.initialCapacity(1000) // 初始容量
.maximumSize(10000L) // 设定最大容量
.expireAfterWrite(30L, TimeUnit.MINUTES) // 设定写入过期时间
.concurrencyLevel(8) // 设置最大并发写操作线程数
.refreshAfterWrite(1L, TimeUnit.MINUTES) // 设定自动刷新数据时间
.recordStats() // 开启缓存执行情况统计
.build(new CacheLoader<String, User>() {
@Override
public User load(String key) throws Exception {
return userDao.getUser(key);
}
});
}
业务层使用
Guava Cache容器对象创建完成后,可以基于其提供的对外接口完成相关缓存的具体操作。首先可以了解下Cache提供的对外操作接口:
对关键接口的含义梳理归纳如下:
接口名称 | 具体说明 |
---|---|
get | 查询指定key对应的value值,如果缓存中没匹配,则基于给定的Callable 逻辑去获取数据回填缓存中并返回 |
getIfPresent | 如果缓存中存在指定的key值,则返回对应的value值,否则返回null(此方法不会触发自动回源与回填操作) |
getAllPresent | 针对传入的key列表,返回缓存中存在的对应value值列表(不会触发自动回源与回填操作) |
put | 往缓存中添加key-value键值对 |
putAll | 批量往缓存中添加key-value键值对 |
invalidate | 从缓存中删除指定的记录 |
invalidateAll | 从缓存中批量删除指定记录,如果无参数,则清空所有缓存 |
size | 获取缓存容器中的总记录数 |
stats | 获取缓存容器当前的统计数据 |
asMap | 将缓存中的数据转换为ConcurrentHashMap 格式返回 |
cleanUp | 清理所有的已过期的数据 |
在项目中,可以基于上述接口,实现各种缓存操作功能。
public static void main(String[] args) {
CacheService cacheService = new CacheService();
LoadingCache<String, User> cache = cacheService.createUserCache6();
cache.put("122", new User("122"));
cache.put("122", new User("122"));
System.out.println("put操作后查询:" + cache.getIfPresent("122"));
cache.invalidate("122");
System.out.println("invalidate操作后查询:" + cache.getIfPresent("122"));
System.out.println(cache.stats());
}
执行后,结果如下:
put操作后查询:User(userId=122, userName=null, department=null)
invalidate操作后查询:null
CacheStats{hitCount=1, missCount=1, loadSuccessCount=0, loadExceptionCount=0, totalLoadTime=0, evictionCount=0}
当然,上述示例代码中这种使用方式有个明显的弊端就是业务层面对Guava Cache的私有API
依赖过深,后续如果需要替换Cache组件的时候会比较痛苦,需要对业务调用的地方进行大改。所以真正项目里面,最好还是对其适当封装,以实现业务层面的解耦。如果你的项目是使用Spring框架,也可以基于Spring Cache
统一规范来集成并使用Guava Cache,降低对业务逻辑的侵入。
小结回顾
好啦,关于Guava Cache的功能与关键特性介绍,以及项目中具体的集成与使用方法,就介绍到这里了。总结一下,Guava Cache其实就是一个增强版的大号ConcurrentHashMap,在保证线程安全的情况下,增加了缓存必备的数据过期、容量限制、回源策略等能力,既保证了本身的精简,又使得整体能力足以满足大部分本地缓存场景的使用诉求。也正是由于这些原因,Guava Cache在JAVA领域广受好评,使用范围非常的广泛。
下一篇文章中,我们将继续对Guava Cache展开讨论,跳出使用层面,剖析其内部核心实现逻辑。如果有兴趣,欢迎关注后续文章的更新。
那么,关于本文中提及的内容,你是否有自己的一些想法与见解呢?欢迎评论区一起交流下,期待和各位小伙伴们一起切磋、共同成长。
补充说明1 :
本文属于《深入理解缓存原理与实战设计》系列专栏的内容之一。该专栏围绕缓存这个宏大命题进行展开阐述,全方位、系统性地深度剖析各种缓存实现策略与原理、以及缓存的各种用法、各种问题应对策略,并一起探讨下缓存设计的哲学。
如果有兴趣,也欢迎关注此专栏。
补充说明2 :
- 关于本文中涉及的演示代码的完整示例,我已经整理并提交到github中,如果您有需要,可以自取:https://github.com/veezean/JavaBasicSkills
我是悟道,聊技术、又不仅仅聊技术~
如果觉得有用,请点赞 + 关注让我感受到您的支持。也可以关注下我的公众号【架构悟道】,获取更及时的更新。
期待与你一起探讨,一起成长为更好的自己。
重新认识下JVM级别的本地缓存框架Guava Cache——优秀从何而来的更多相关文章
- Spring Boot 揭秘与实战(二) 数据缓存篇 - Guava Cache
文章目录 1. Guava Cache 集成 2. 个性化配置 3. 源代码 本文,讲解 Spring Boot 如何集成 Guava Cache,实现缓存. 在阅读「Spring Boot 揭秘与实 ...
- Java高性能本地缓存框架Caffeine
一.序言 Caffeine是一个进程内部缓存框架,使用了Java 8最新的[StampedLock]乐观锁技术,极大提高缓存并发吞吐量,一个高性能的 Java 缓存库,被称为最快缓存. 二.缓存简介 ...
- springboot之本地缓存(guava与caffeine)
1. 场景描述 因项目要使用本地缓存,具体为啥不用redis等,就不讨论,记录下过程,希望能帮到需要的朋友. 2.解决方案 2.1 使用google的guava作为本地缓存 初步的想法是使用googl ...
- 本地缓存google.guava及分布式缓存redis 随笔
近期项目用到了缓存,我选用的是主流的google.guava作本地缓存,redis作分布式 缓存,先说说我对本地缓存和分布式缓存的理解吧,可能不太成熟的地方,大家指出,一起 学习.本地缓存的特点是速度 ...
- 本地缓存之GUAVA
项目开发中,很多配置数据需要缓存,一般来说,开发人员都会手动写HashMap,HashSet或者ConcurrentHashMap,ConcurrentHashSet缓存数据,但是这样的缓存往往存在内 ...
- 本地缓存解决方案-Caffeine Cache
1.1 关于Caffeine Cache Google Guava Cache是一种非常优秀本地缓存解决方案,提供了基于容量,时间和引用的缓存回收方式.基于容量的方式内部实现采用LRU算法,基于引 ...
- Glide 4.0.0 下之加载本地缓存的图片
在网上搜了下,无意中发现RequestOptions还有个方法: onlyRetrieveFromCache 用了下是OK的 try { File imageFile = Glide.with(con ...
- 第七章 企业项目开发--本地缓存guava cache
1.在实际项目开发中,会使用到很多缓存技术,而且数据库的设计一般也会依赖于有缓存的情况下设计. 常用的缓存分两种:本地缓存和分布式缓存. 常用的本地缓存是guava cache,本章主要介绍guava ...
- 企业项目开发--本地缓存guava cache(1)
此文已由作者赵计刚授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 1.在实际项目开发中,会使用到很多缓存技术,而且数据库的设计一般也会依赖于有缓存的情况下设计. 常用的缓存分 ...
- Caffeine Cache-高性能Java本地缓存组件
前面刚说到Guava Cache,他的优点是封装了get,put操作:提供线程安全的缓存操作:提供过期策略:提供回收策略:缓存监控.当缓存的数据超过最大值时,使用LRU算法替换.这一篇我们将要谈到一个 ...
随机推荐
- KingbaseES rownum 与 limit 的 执行计划区别
数据准备 --创建基础数据表100W行 create table test07 as select * from (select generate_series(1, 1000000) id, (ra ...
- [开源]React/Vue通用的状态管理框架,不好用你来打我👀
为了防止被打,有请"燕双鹰"镇楼️♀️️️...o... 话说新冠3年,"状态管理框架"豪杰并起.群雄逐鹿,ReduxToolkit.Mobx.Vuex. ...
- HashMap的哈希函数为何用(n - 1) & hash
前言 在上一篇 Java 中HashMap详解(含HashTable, ConcurrentHashMap) 中提到在map.put(key, value)的过程中,计算完key的hash值, 是通过 ...
- 1.Ceph 基础篇 - 存储基础及架构介绍
文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247485232&idx=1&sn=ff0e93b9 ...
- Logstash: 启动监控及集中管理
在本篇文章里,我将详细介绍如果启动Logstash的监控及集中管理. 前提条件 安装好Logstash,设置Elasticsearch及Kibana的安全密码. 如何监控Logstash? 我们安装如 ...
- PostgreSQL 删除表格
PostgreSQL 使用 DROP TABLE 语句来删除表格,包含表格数据.规则.触发器等,所以删除表格要慎重,删除后所有信息就消失了. 语法 DROP TABLE 语法格式如下: DROP TA ...
- IDE->Gitlab->Gitlab CI/CD->Docker->K8S流程
前提条件: Gitlab,Gitlab CI/CD,Nexus,K8S 步骤流程: 1.开发人员IDE上传更新代码到Gitlab 2.Gitlab收到用户提交的更新后会自动CI/CD,并创建Docke ...
- [题解] HDU 5115 Dire Wolf 区间DP
考虑先枚举所有的物品中最后拿走的,这样就分成了2个子问题,即先拿完左边的,再拿完右边的,最后拿选出的那个.令dp(i,j)表示拿完[i,j]所有物品的最小代价.你可能会说,我们拿[i,j]这一段物品的 ...
- 老杜MySql——34道作业题
老杜MySql链接:https://www.bilibili.com/video/BV1Vy4y1z7EX?p=132 本次随笔主要来源于老杜MySql讲解视频后面的作业题,加上个人的一些理解,以及整 ...
- 洛谷P1950 长方形(单调栈)
一道单调栈的好题啊...... 思路是很奇妙的,对于每个点(i,j),我们可以算它对答案的贡献(即包含它的矩形数量),包含该点的矩形,点的高度为h[j],点右边的高度一定大于等于h[j],左边的高度一 ...