这道题看起来像是线段树和最大子段和的结合,但这里求最大子段和不用dp,充分利用线段树递归的优势来处理。个人理解:线段树相当于把求整个区间的最大子段和的问题不断划分为很多个小问题,容易解决小问题,然后递归处理较大的问题(分治),所以这就可以用来解决。

在线段树中,除了左端点,右端点,新开4个域——ans,ml,mr,sum,其中sum为该区间的和,ans为该区间上的最大子段和,ml为必须包含左端点(以左端点为头)的最大子段和,mr为必须包含右端点(以右端点为尾)的最大子段和。

更新操作在up()中,应该容易看懂,需要思考的是查询操作,他返回的是一个结构体类型,该操作相当于针对某个询问的区间来更新结果,最后的query().ans也就是答案了

 1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int N=5e5+10;
5 int n,m;
6 struct node{
7 int l,r;
8 ll ml,mr,sum,ans;
9 }t[N<<2];
10
11 void up(int k){
12 t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
13 t[k].ml=max(t[k<<1].ml,t[k<<1].sum+t[k<<1|1].ml);
14 t[k].mr=max(t[k<<1|1].mr,t[k<<1|1].sum+t[k<<1].mr);
15 t[k].ans=max(max(t[k<<1].ans,t[k<<1|1].ans),t[k<<1].mr+t[k<<1|1].ml);
16 }
17
18 void build(int k,int l,int r){
19 t[k].l=l,t[k].r=r;
20 if(l==r){
21 scanf("%lld",&t[k].sum);
22 t[k].ml=t[k].mr=t[k].ans=t[k].sum;
23 return ;
24 }
25 int mid=(l+r)>>1;
26 build(k<<1,l,mid);build(k<<1|1,mid+1,r);
27 up(k);
28 }
29
30 node query(int k,int l,int r){
31 if(t[k].l>=l && t[k].r<=r) return t[k];
32 int mid=(t[k].l+t[k].r)>>1;
33 if(r<=mid) return query(k<<1,l,r);
34 else if(l>mid) return query(k<<1|1,l,r);
35 else{
36 node t,a=query(k<<1,l,r),b=query(k<<1|1,l,r);
37 t.sum=a.sum+b.sum;
38 t.ml=max(a.ml,a.sum+b.ml);
39 t.mr=max(b.mr,b.sum+a.mr);
40 t.ans=max(max(a.ans,b.ans),a.mr+b.ml);//合并
41 return t;
42 }
43 }
44
45 void change(int k,int p,int x){//将p位置上的数改为x
46 if(t[k].l==t[k].r && t[k].l==p){
47 t[k].ml=t[k].mr=t[k].ans=t[k].sum=x;
48 return ;
49 }
50 int mid=(t[k].l+t[k].r)>>1;
51 if(p<=mid) change(k<<1,p,x);
52 else change(k<<1|1,p,x);
53 up(k);
54 }
55
56 int main(){
57 scanf("%d%d",&n,&m);
58 build(1,1,n);
59 while(m--){
60 int opt,a,b;
61 scanf("%d%d%d",&opt,&a,&b);
62 if(opt==1){
63 if(a>b) swap(a,b);
64 printf("%lld\n",query(1,a,b).ans);
65 }
66 else change(1,a,b);
67 }
68 }

洛谷P4513 小白逛公园 (线段树)的更多相关文章

  1. 洛谷 P4513 小白逛公园-区间最大子段和-分治+线段树区间合并(单点更新、区间查询)

    P4513 小白逛公园 题目背景 小新经常陪小白去公园玩,也就是所谓的遛狗啦… 题目描述 在小新家附近有一条“公园路”,路的一边从南到北依次排着nn个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩 ...

  2. 2018.07.23 洛谷P4513 小白逛公园(线段树)

    传送门 线段树常规操作了解一下. 单点修改维护区间最大连续和. 对于一个区间,维护区间从左端点开始的连续最大和,从右端点开始的连续最大和,整个区间最大和,区间和. 代码如下: #include< ...

  3. P4513 小白逛公园 (线段树)

    题目链接 Solution 线段树是一门比较刁钻的手艺... 此题我们需要维护 \(4\) 个变量: \(amx\) 代表当前节点的最大值. \(lmx\) 代表当前节点以左端点为起点的区间最大值. ...

  4. 洛谷P4513 小白逛公园

    区间最大子段和模板题.. 维护四个数组:prefix, suffix, sum, tree 假设当前访问节点为cur prefix[cur]=max(prefix[lson],sum[lson]+pr ...

  5. Bzoj 1756: Vijos1083 小白逛公园 线段树

    1756: Vijos1083 小白逛公园 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1021  Solved: 326[Submit][Statu ...

  6. Vijos 1083 小白逛公园(线段树)

    线段树,每个结点维护区间内的最大值M,和sum,最大前缀和lm,最大后缀和rm. 若要求区间为[a,b],则答案max(此区间M,左儿子M,右儿子M,左儿子rm+右儿子lm). ----------- ...

  7. [vijos]1083小白逛公园<线段树>

    描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的风景给每个公 ...

  8. [日常摸鱼]Vijos1083小白逛公园-线段树

    题意:单点修改,询问区间最大子段和,$n\leq 5e5$ 考虑分治的方法$O(nlogn)$求一次最大子段和的做法,我们是根据中点分成左右两个区间,那么整个区间的答案要么是左边答案,要么是右边答案, ...

  9. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

随机推荐

  1. 一步一步在angular11中添加多语言支持

    1.新建angular 2.添加@angular/localize ng add @angular/localize 3.设置默认locale_id,在app.module.ts中 import { ...

  2. 论文翻译:2022_Time-Frequency Attention for Monaural Speech Enhancement

    论文地址:单耳语音增强的时频注意 引用格式:Zhang Q, Song Q, Ni Z, et al. Time-Frequency Attention for Monaural Speech Enh ...

  3. Modbus转Profinet网关案例 | 三菱FR-A700系列变频器配置方法

    本案例是利用小疆智控Modbus转Profinet网关GW-PN5001把三菱FR-A700变频器接入到西门子1200PLC.实现Profinet转Modbus的通讯协议的互转. 用到设备有:三菱FR ...

  4. JavaScript 里三个点 ...,可不是省略号啊···

    摘要:Three dots ( - ) in JavaScript. 本文分享自华为云社区<JavaScript 里三个点 ... 的用法>,作者: Jerry Wang . Rest P ...

  5. P1980 计数问题 - 记录

    P1980 计数问题 题目描述 试计算在区间 1 到 n的所有整数中,数字x(0 ≤ x ≤ 9)共出现了多少次?例如,在 1到11中,即在 1,2,3,4,5,6,7,8,9,10,11中,数字1出 ...

  6. 获取jdbc中resultSet结果集的大小

    当我们执行完一条Sql语句,获取到一个 ResultSet 对象后,有时我们需要立即知道到底返回了多少个元素,但是 ResultSet 并没有提供一个 size() 方法 or length 的属性, ...

  7. Manacher算法讲解——字符串最长回文子串

    引 入 引入 引入 Manachar算法主要是处理字符串中关于回文串的问题的,这没什么好说的. M a n a c h e r 算 法 Manacher算法 Manacher算法 朴素 求一个字符串中 ...

  8. [JOI 2017 Final] 足球 (建图,最短路)

    题面 题解 我们可以总结出球的两种状态,要么自己飞,要么在球员脚下被带飞. 自己飞的情况下,他只能单向直线运动,每一步代价为A,被带飞可以乱走,每一步代价为C. 从自己飞到被带飞需要一个距离自己最近的 ...

  9. 二 代理模式【Proxy Pattern】 来自CBF4LIFE 的设计模式

    什么是代理模式呢?我很忙,忙的没空理你,那你要找我呢就先找我的代理人吧,那代理人总要知道被代理人能做哪些事情不能做哪些事情吧,那就是两个人具备同一个接口,代理人虽然不能干活,但是被代理的人能干活呀. ...

  10. 开源:Taurus.MVC-Java 版本框架 (支持javax.servlet.*和jakarta.servlet.*双系列,内集成微服务客户端)

    版本说明: 因为之前有了Taurus.MVC-DotNet 版本框架,因此框架标了-Java后缀. .Net  版本: 开源文章:开源:Taurus.MVC-DotNet 版本框架 (支持.NET C ...