首先理解sg函数必须先理解mex函数

mex是求除它集合内的最小大于等于0的整数,例:mex{1,2}=0;mex{2}=0;mex{0,1,2}=3;mex{0,5}=1。

而sg函数是啥呢?

对于任意状态 x , 定义 sg(x) = mex(f),其中f 是 x 后继状态的sg函数值的集合(就是上述mex中的数值)。最后返回值(也就是sg(x))为0为必败点,不为零必胜点。

看不懂,咱直接来个例子:

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

x         0  1  2  3  4  5  6  7  8....

sg[x]      0  1  0  1  2  3  2  0  1...

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

这下就ojbk了吧

f[]需要从小到大排序

1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);

2.可选步数为任意步,SG(x) = x;

3.可选步数为一系列不连续的数,用GetSG()计算

再附个模板吧

 1 //f[]:可以取走的石子个数
2 //sg[]:0~n的SG函数值
3 int f[maxn],sg[maxn],mex[maxn];
4 void getSG(int n){
5 int i,j;
6 memset(sg,0,sizeof(sg));
7 for(i=1;i<=n;i++){
8 memset(mex,0,sizeof(mex));
9 for(j=1;f[j]<=i&&f[j]<=m;j++) //注意加f[i]的限定条件,此处为f[j]<=m
10 mex[sg[i-f[j]]]=1;
11 for(j=0;j<=n;j++){ //求mex中未出现的最小的非负整数
12 if(mex[j]==0){
13 sg[i]=j;
14 break;
15 }
16 }
17 //cout<<i<<" "<<sg[i]<<endl;
18 }
19 }

sg函数入门理解的更多相关文章

  1. (转载)-关于sg函数的理解

    最近学习了nim博弈,但是始终无法理解sg函数为什么sg[S]=mex(sg[S'] | S->S'),看到一篇博文解释的不错,截取了需要的几章节. 四.Sprague-Grundy数的提出 我 ...

  2. SG函数的理解集应用

    转载自知乎牛客竞赛——博弈论入门(函数讲解+真题模板) SG函数 作用 对于一个状态i为先手必胜态当且仅当SG(i)!=0. 转移 那怎么得到SG函数尼. SG(i)=mex(SG(j))(状态i可以 ...

  3. sg函数的理解

    sg,是用来判断博弈问题的输赢的,当sg值为0的时候,就是输,不为0就是赢: 在这之前,我们规定一个对于集合的操作mex,表示最小的不属于该集合的非负整数. 举几个栗子:mex{0,1,2}=3,me ...

  4. HDU 1848 Fibonacci again and again(SG函数入门)题解

    思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...

  5. SG函数入门&&HDU 1848

    SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...

  6. SG函数入门

    sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2 ...

  7. (巴什博弈 sg函数入门1) Brave Game -- hdu -- 1846

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1846 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则: ...

  8. Light OJ 1199 - Partitioning Game (博弈sg函数)

    D - Partitioning Game Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  9. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

随机推荐

  1. AI目标分割能力,无需绿幕即可实现快速视频抠图

    绿幕抠图是影视制作过程中常见的技术手段,常用于视频中抠除并替换背景,通过后期加工实现视频剪辑制作的更多可能性.然而,绿幕抠图技术制作成本费时费力,无法应用于日常生活. 华为视频编辑服务近期上线目标分割 ...

  2. Odoo14 js 怎么获取图片url链接

    上内部代码: 1 _getImageURL: function (model, field, id, placeholder) { 2 id = (_.isArray(id) ? id[0] : id ...

  3. odoo14 入门解刨关联字段

    Odoo中关联字段是用来绑定表与表之间主从关系的. 主从关系指: 首先必须要明白id的存在的意义,它具备"唯一"的属性,也就是表中所有记录中该字段的值不会重复. 假设表A存储是身份 ...

  4. 5.6 NOI模拟

    \(5.6\ NOI\)模拟 明天就母亲节了,给家里打了个电话(\(lj\ hsez\)断我电话的电,在宿舍打不了,只能用教练手机打了) 其实我不是很能看到自己的\(future,\)甚至看不到高三的 ...

  5. linux常见命令(十)

    cut/grep/sort/uniq/wc 连续执行多个命令--;进入/data新建data01目录,在data01目录新建test.txtcd /data;mkdir data01;cd data0 ...

  6. CMAKE编译时如何自动下载第三方库并解压、安装到指定目录

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 导语 在日常开发过程中难免会使用到第三方库或者需要将部分库分离另外存储,如果将库与代码放在一起难免会造成工程庞大,此时就可 ...

  7. 技术分享 | load data导致主键丢失的神秘问题

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1 ...

  8. Apache Hudi vs Delta Lake:透明TPC-DS Lakehouse性能基准

    1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应 ...

  9. Jenkins初始化界面一直显示Please wait while Jenkins is getting ready to work ...

    第一次访问jenkins时,会提示如下界面:  注:如果这个界面初始化的时间过长,则需要修改相关配置文件. 原因:因为访问官网太慢.我们只需要换一个源,不使用官网的源即可. 1.找到 jenkins工 ...

  10. 使springAOP生效不一定要加@EnableAspectJAutoProxy注解

    在上篇文章<springAOP和AspectJ有关系吗?如何使用springAOP面向切面编程>中遗留了一个问题,那就是在springboot中使用springAOP需要加@EnableA ...