题目描述 Description

给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤40)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1~MAX之间的每一个邮资值都能得到。

例如,N=3,K=2,如果面值分别为1分、4分,则在1分~6分之间的每一个邮资值都能得到(当然还有8分、9分和12分);如果面值分别为1分、3分,则在1分~7分之间的每一个邮资值都能得到。可以验证当N=3,K=2时,7分就是可以得到的连续的邮资最大值,所以MAX=7,面值分别为1分、3分。

输入描述 Input Description

N和K

输出描述 Output Description

每种邮票的面值,连续最大能到的面值数。数据保证答案唯一。

样例输入 Sample Input

3 2

样例输出 Sample Output

1 3

MAX=7

分析:

不断的暴力枚举每一种的面值的结果,第i面值的范围,可以有第i-1钟面值得出范围,a[i]是不断变化枚举的面值的数组,所以需要res[i]数组来记录正确答案

dp[i]表示到达i的结果需要最少的张数。

大神的解释

/*
这个题目知道是深搜,但是邮票面值的上界在深搜中不好确定,只知道下界是>前一个,这里就妙在用DP解决了深搜的上界,和当前邮票可以取到的连续最大值
*/
/*
①搜索。对每一步,枚举邮票面值,然后搜索下一张邮票面值并更新最优解。 ②完全背包确定搜索范围。 假设现在枚举到第 i 张邮票面值,第 i-1 张邮票面值为a[i-1],前 i-1 张邮票得到的最大连续值为x,则第 i 张邮票面值的范围就为 [a[i-1]+1,x+1]; 假设现在有 n 张邮票,怎么得到其最大连续值呢? 用 f[i] 记录达到数值 i 所需的最小邮票数量,初始化为一个极大值。然后用完全背包算出 f[i] 的值,从 0 开始,第一个f[i]>n,则 i-1 就为最大连续值。 */
#define N 50
#include<iostream>
using namespace std;
#define inf 500
#include<cstdio>
#include<cstring>
int b[N],ans=,a[N],f[inf];
int n,k;
void dfs(int m)
{
memset(f,0x3f,sizeof(f));
f[]=;
int i;
for(i=;i<=inf;++i)
{
for(int j=;j<=m&&a[j]<=i;++j)
f[i]=min(f[i],f[i-a[j]]+);/*完全背包是可以把物品空间的内外循环交换位置的,反正都是无限放*/
if(f[i]>n)/*当前m种邮票所能取到的最大值*/
{
i--;
if(i>ans)
{
ans=i;
for(int l=;l<=m;++l)
b[l]=a[l];
}
break;
}
} if(m==k) return;
for(int j=i+;j>a[m];--j)
{/*下一张邮票的范围*/
a[m+]=j;
dfs(m+);
}
}
int main()
{
scanf("%d%d",&n,&k);
a[]=;
dfs();
for(int i=;i<=k;++i)
printf("%d ",b[i]);
printf("\n");
printf("MAX=%d\n",ans);
return ;
}

积极敲的

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=+;
const int INF=0x3f3f3f3f;
int dp[maxn];
int a[],res[];
int ans=;
int n,k; void work()
{
dp[]=;
int i=;
while(dp[i]<=n)
{
i++;
dp[i]=INF;
for(int j= ; j<=k && a[j]<=i ; j++)
dp[i]=min(dp[i],dp[i-a[j]]+);
}
if(i->ans)
{
ans=i-;
for(int i= ; i<=k ; i++)
{
res[i]=a[i];
}
}
}
void dfs(int m)
{
if(m==k+)
{
work();
return ;
}
for(int j=a[m-]+ ; j<=a[m-]*n+ ; j++)
{
a[m]=j;
dfs(m+); }
}
int main( )
{
scanf("%d%d",&n,&k);
a[]=;
dfs();
for(int i= ; i<=k ; i++)
printf("%d ",res[i]);
printf("\nMAX=%d\n",ans);
}

1047 邮票面值设计 (DFS+DP)的更多相关文章

  1. [NOIP1999提高] CODEVS 1047 邮票面值设计(dfs+dp)

    dfs出邮票的各种面值,然后dp求解. ------------------------------------------------------------------------------- ...

  2. 【NOIP1999】邮票面值设计 dfs+dp

    题目传送门 这道题其实就是找一波上界比较麻烦 用一波 背包可以推出上界mx 所以新加入的物品价值一旦大于mx+1,显然就会出现断层,所以可以以maxm+1为枚举上界,然后这样进行下一层的dfs. 这样 ...

  3. 深搜+DP剪枝 codevs 1047 邮票面值设计

    codevs 1047 邮票面值设计 1999年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description ...

  4. 洛谷P1021邮票面值设计 [noip1999] dp+搜索

    正解:dfs+dp 解题报告: 传送门! 第一眼以为小凯的疑惑 ummm说实话没看标签我还真没想到正解:D 本来以为这么多年前的noip应该不会很难:D 看来还是太菜了鸭QAQ 然后听说题解都可以被6 ...

  5. NOIP1999邮票面值设计[搜索|DP]

    题目描述 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤40)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1-MAX之间的每一个邮资值都能得到 ...

  6. codevs 1047 邮票面值设计

    /* 开始没啥好的思路 暴力吧 T的太严重 加了k>n的特判 结果没数据…..然后又暴力生成了几组答案 打表 然而有没有数据 华丽的爆零了 正解 回溯+DP 回溯生成k数组 然后DP找最优解更新 ...

  7. P1021 邮票面值设计(dfs+背包dp)

    P1021 邮票面值设计 题目传送门 题意: 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15N+K≤15)种邮票的情况下 (假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大 ...

  8. P1021 邮票面值设计

    P1021 邮票面值设计 题目描述 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1-MAX ...

  9. P1021 邮票面值设计——搜索+完全背包

    P1021 邮票面值设计 题目意思是你最多用n张邮票,你可以自己设定k种邮票的面值,每种邮票数量无穷,你最多能用这k种邮票在不超过n张的情况下,组合成的价值要求是从1开始连续的, 求最大能连续到多少: ...

随机推荐

  1. javascript变量声明提升(hoisting)

    javascript的变量声明具有hoisting机制,JavaScript引擎在执行的时候,会把所有变量的声明都提升到当前作用域的最前面. 先看一段代码 1 2 3 4 5 var v = &quo ...

  2. memcache windows64 位安装

    --环境: windows 2008 R2 64位 wampserver2.2e-php5.3.13-httpd2.2.22-mysql5.5.24-x64 --目标: 实现 php 用memcach ...

  3. a标签中href=""的几种用法(转)

    a标签中href=""的几种用法   标签: html / a标签 / javascript 46371 众所周知,a标签的最重要功能是实现超链接和锚点.而且,大多数人认为a标签最 ...

  4. go get

    go get 命令用于从远程代码仓库(比如 Github )上下载并安装代码包.注意,go get 命令会把当前的代码包下载到 $GOPATH 中的第一个工作区的 src 目录中,并安装. 如果在 g ...

  5. ZROI2018提高day3t3

    传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...

  6. Django框架 之 ORM 常用字段和参数

    Django框架 之 ORM 常用字段和参数 浏览目录 常用字段 字段合集 自定义字段 字段参数 DateField和DateTimeField 关系字段 ForeignKey OneToOneFie ...

  7. python中的作用域与名称空间

    python中的名称空间以及作用域分析 从Python解释器开始执行之后,就在内存中开辟一个空间,每当遇到一个变量的时候,就把变量名和值之间对应的关系记录下来,但是当遇到函数定义的时候,解释器只是象征 ...

  8. SDUT 2498 AOE网上的关键路径

    AOE网上的关键路径 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 一个无环的有向图称为无 ...

  9. kaggle Titanic

    # coding: utf-8 # In[19]: # 0.78468 # In[20]: import numpy as np import pandas as pd import warnings ...

  10. SpringMVC路径问题回顾,加斜杠和不加斜杠的问题(六)

    绝对路径:全的路径. 相对路径:有参照的路径. 加斜杠和不加斜杠的问题如下:(分前台和后台路径,明白这两个就知道什么意思了) 如果是页面,这个图片路径出现在jsp页面,所以是前台路径,前台路径的参照物 ...