题意

给出$n$个数,每次询问区间$(l, r)$内最大字段和

Sol

在合并子树的时候,答案仅有四种情况

打四个标记维护即可

查询同理,用类似update的方式合并

注意查询的时候不能按照以前的方式写,因为不知道变量的下界,最稳妥的办法就是判三种情况

/*

*/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<set>
#include<queue>
#include<cmath>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define rg register
#define sc(x) scanf("%d", &x);
#define pt(x) printf("%d ", x);
#define db(x) double x
#define rep(x) for(int i = 1; i <= x; i++)
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
char buf[( << )], *p1 = buf, *p2 = buf;
char obuf[<<], *O = obuf;
#define OS *O++ = '\n';
using namespace std;
using namespace __gnu_pbds;
const int MAXN = , INF = 1e9 + , mod = 1e9 + ;
const double eps = 1e-;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
void print(int x) {
if(x > ) print(x / );
*O++ = x % + '';
}
#define ls k << 1
#define rs k << 1 | 1
int N, M;
int a[MAXN];
struct Node {
int l, r, lmx, rmx, mx, sum;
}T[MAXN << ];
void update(int k) {
T[k].sum = T[ls].sum + T[rs].sum;
T[k].mx = max(T[ls].mx, T[rs].mx);
T[k].mx = max(T[k].mx, T[ls].rmx + T[rs].lmx);
T[k].rmx = max(T[rs].rmx, T[rs].sum + T[ls].rmx);
T[k].lmx = max(T[ls].lmx, T[ls].sum + T[rs].lmx);
}
void Build(int k, int ll, int rr) {
T[k] = (Node) {ll, rr, , , };
if(ll == rr) {
T[k].lmx = T[k].rmx = T[k].mx = T[k].sum = a[ll];
return ;
}
int mid = ll + rr >> ;
Build(ls, ll, mid);
Build(rs, mid + , rr);
update(k);
}
Node merge(Node a, Node b) {
Node now;
now.sum = a.sum + b.sum;
now.mx = max(a.mx, b.mx);
now.mx = max(now.mx, a.rmx + b.lmx);
now.rmx = max(b.rmx, b.sum + a.rmx);
now.lmx = max(a.lmx, a.sum + b.lmx);
// printf("%d %d %d %d\n", now.mx, now.lmx, now.rmx, now.sum);
return now;
}
Node Query(int k, int ll, int rr) {
Node ans = (Node) {, , , , };
if(ll <= T[k].l && T[k].r <= rr) return T[k];
int mid = T[k].l + T[k].r >> ;
/*if(ll <= mid) ans = Query(ls, ll, rr);
if(rr > mid) ans = merge(ans, Query(rs, ll, rr)); WA!*/
if(ll > mid) return Query(rs, ll, rr);
else if(rr <= mid) return Query(ls, ll, rr);
else return merge(Query(ls, ll, rr), Query(rs, ll, rr));
return ans;
}
main() {
//freopen("a.in", "r", stdin);
N = read();
for(int i = ; i <= N; i++) a[i] = read();
Build(, , N);
int M = read();
while(M--) {
int x = read(), y = read();
printf("%d\n", Query(, x, y).mx);
}
//fwrite(obuf, O-obuf, 1 , stdout);
return ;
}
/*
5
-10 12 1 -45 134
5
1 5
2 3
4 5
1 4
3 5
*/

SPOJ1043 GSS1(线段树)的更多相关文章

  1. SPOJ - GSS1 —— 线段树 (结点信息合并)

    题目链接:https://vjudge.net/problem/SPOJ-GSS1 GSS1 - Can you answer these queries I #tree You are given ...

  2. GSS1 - Can you answer these queries I(线段树)

    前言 线段树菜鸡报告,stO ZCDHJ Orz,GSS基本上都切完了. Solution 考虑一下用线段树维护一段区间左边连续的Max,右边的连续Max,中间的连续Max还有总和,发现这些东西可以相 ...

  3. 线段树【SP1043】GSS1 - Can you answer these queries I

    Description 给出了序列\(A_1,A_2,-,A_n\). \(a_i \leq 15007,1 \leq n \leq 50000\).查询定义如下: 查询\((x,y)=max{a_i ...

  4. SPOJ GSS1 Can you answer these queries I ——线段树

    [题目分析] 线段树裸题. 注意update的操作,写结构体里好方便. 嗯,没了. [代码] #include <cstdio> #include <cstring> #inc ...

  5. SP1043 GSS1 - Can you answer these queries I 线段树

    问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...

  6. CF380C. Sereja and Brackets[线段树 区间合并]

    C. Sereja and Brackets time limit per test 1 second memory limit per test 256 megabytes input standa ...

  7. SPOJ GSS1_Can you answer these queries I(线段树区间合并)

    SPOJ GSS1_Can you answer these queries I(线段树区间合并) 标签(空格分隔): 线段树区间合并 题目链接 GSS1 - Can you answer these ...

  8. SPOJ1557 GSS2 Can you answer these queries II 历史最值线段树

    传送门 题意:给出一个长度为$N$的数列,$Q$次询问,每一次询问$[l,r]$之间的最大子段和,相同的数只计算一次.所有数字的绝对值$\leq 10^5$ GSS系列中不板子的大火题,单独拿出来写 ...

  9. SPOJ GSS3 Can you answer these queries III ——线段树

    [题目分析] GSS1的基础上增加修改操作. 同理线段树即可,多写一个函数就好了. [代码] #include <cstdio> #include <cstring> #inc ...

随机推荐

  1. 11-散列4 Hashing - Hard Version (30 分)

    Given a hash table of size N, we can define a hash function (. Suppose that the linear probing is us ...

  2. java 单例模式之线程安全的饿汉模式和懒汉模式

    转载博主:thankyou https://blog.csdn.net/twj13162380953/article/details/53869983 理解: 饿汉式获取实例的步骤简单所以线程更安全. ...

  3. jQuery Plugin Poshy Tip 使用 统一提示信息

    项目到了后期,发现前端的提示信息不统一,解决思路如下: 1.回顾系统中tip出现的场景:表单验证提示信息.数据列表中随填随显 2.确定问题域:多条提示信息层叠.信息显示风格不统一 3.结论:找出一款合 ...

  4. 读书笔记 - 《梦想与浮沉:A股十年上市博弈》

    拿到这本书是个很偶然的事件.有几本软件业书由于太老已经绝版,偶然想到小区的图书馆自动借阅机和读者证的预借功能,就兴冲冲的跑去尝试.没想到预借只能在网页上进行,就随手从机器里借了这本书.没想到细观之下让 ...

  5. java——变量、jvm内存划分

    基本数据变量类型:byte.short.int.long.float.double.boolean.char eg : int i = 1; 引用数据变量类型:数组.类.接口.枚举.注解 eg : S ...

  6. centos6安装bochs

    安装包 bochs 2.6.8 平台 centos6 前提依赖 yum groupinstall -y "Server Platform Development" "De ...

  7. 从零开始的全栈工程师——js篇2.17(属性和节点获取)

    DOM 一.节点树状图 Document>documentElement>body>tagname 二.常用的节点类型 元素节点(标签) 文本节点(文本节点) 属性节点(标签里的属性 ...

  8. javascript之常用正则表达式

    一.校验数字的表达式 1 数字:^[0-9]*$ 2 n位的数字:^\d{n}$ 3 至少n位的数字:^\d{n,}$ 4 m-n位的数字:^\d{m,n}$ 5 零和非零开头的数字:^(0|[1-9 ...

  9. <Android 应用 之路> 天气预报(四)

    前言 第二次尝试完成天气预报应用,与上次不同的是,个人感觉这次的Ui不那么丑陋,整体的实用性和界面效果,用户体验相较上一次有所提升,但是还是有很多地方需要完善. 这次使用到的内容比较丰富,包括聚合数据 ...

  10. ArcGIS中合并空间有压盖关系的要素属性

    1.前言 在客户单位, 被客户问道这样一个问题“如何合并两个有压盖关系图层的属性信息?” 在工具箱里面可以使用以下工具解决: 2.处理过程 (1)在工具箱中选择Spatial Join工具,并设置相关 ...