Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015

This pipeline uses an annotated genome to identify differential expressed genes/transcripts. 10 hour minimum ($470 internal, $600 external) per project.

1. Quality Assessment

Quality of data assessed by FastQC; results of quality assessment will be evaluated prior to downstream analysis.

  • Deliverables:

    • reports generated by FastQC
  • Tools used:
    • FastQC: (Andrews 2010) used to generate quality summaries of data:

      • Per base sequence quality report: useful for deciding if trimming necessary.
      • Sequence duplication levels: evaluation of library complexity. Higher levels of sequence duplication may be expected for high coverage RNAseq data.
      • Overrepresented sequences: evaluation of adapter contamination.

2. Fastq Preprocessing

Quality assessment used to decide if any preprocessing of the raw data is required and if so, preprocessing is performed.

  • Deliverables:

    • Trimmed/filtered fastq files.
  • Tools Used:
    • Fastx-toolkit: Used to preprocess fastq files.

      • Fastq quality trimmer: Trimming reads based on quality.
      • Fastq quality filter: Filtering reads based on quality.
    • Cutadapt: Used to remove adaptor from reads.
 

3. Mapping

Mapping to genome reference performed using BWA-mem or Tophat.

  • Deliverables:

    • Mapping results, as bam files and mapping statistics.
  • Tools Used:
    • BWA-mem: (Li 2013) primary aligner used to generate read alignments.
    • Tophat: (Kim 2011) aligner used to generate read alignments in a splice-aware manner and identify novel junctions.
    • Samtools: (Li 2009) used to generate mapping statistics.

4. Gene/Transcript Counting

Counting the number of reads mapping to annotated intervals to obtain abundance of genes/transcripts.

  • Deliverables:

    • Raw gene/transcript counts
  • Tools Used:
    • HTSeq-count: (Anders 2014) used to count reads overlapping gene intervals.

5. DEG Identification

Normalization and statistical testing to identify differentially expressed genes.

  • Deliverables:

    • DEG Summary and master file containing fold changes and p values for every gene, MA Plots.
  • Tools Used:
    • DESeq2: (Love 2014) used to perform normalization and test for differential expression using the negative binomial distribution.

6、RNA-Seq Analysis Pipeline的更多相关文章

  1. RNA -seq

    RNA -seq RNA-seq目的.用处::可以帮助我们了解,各种比较条件下,所有基因的表达情况的差异. 比如:正常组织和肿瘤组织的之间的差异:检测药物治疗前后,基因表达的差异:检测发育过程中,不同 ...

  2. RNA seq 两种计算基因表达量方法

    两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比 ...

  3. Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务

    Power BI 与 Azure  Analysis Services 的数据关联:1.建立  Azure  Analysis Services服务

  4. xgene:之ROC曲线、ctDNA、small-RNA seq、甲基化seq、单细胞DNA, mRNA

    灵敏度高 == 假阴性率低,即漏检率低,即有病人却没有发现出来的概率低. 用于判断:有一部分人患有一种疾病,某种检验方法可以在人群中检出多少个病人来. 特异性高 == 假阳性率低,即错把健康判定为病人 ...

  5. Scrapy框架——介绍、安装、命令行创建,启动、项目目录结构介绍、Spiders文件夹详解(包括去重规则)、Selectors解析页面、Items、pipelines(自定义pipeline)、下载中间件(Downloader Middleware)、爬虫中间件、信号

    一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...

  6. 7、RNAseq Downstream Analysis

    Created by Dennis C Wylie, last modified on Jun 29, 2015 Machine learning methods (including cluster ...

  7. 五、Scrapy中Item Pipeline的用法

    本文转载自以下链接: https://scrapy-chs.readthedocs.io/zh_CN/latest/topics/item-pipeline.html https://doc.scra ...

  8. 09、RNA降解图的计算过程

    RNA降解是影响芯片质量的一个很重要的因素,因为RNA是从5’开始降解的,所以理论5’的荧光强度要低于3’.RNA降解曲线可以表现这种趋势. 以样品GSM286756.CEL和GSM286757.CE ...

  9. RNA测序相对基因表达芯片有什么优势?

    RNA测序相对基因表达芯片有什么优势? RNA-Seq和基因表达芯片相比,哪种方法更有优势?关键看适用不适用.那么RNA-Seq适用哪些研究方向?是否您的研究?来跟随本文了解一下RNA测序相对基因表达 ...

随机推荐

  1. mini2440移植uboot 2014.04(四)

    我修改的代码已经上传到github上,地址:https://github.com/qiaoyuguo/u-boot-2014.04-mini2440.git 参考文章: <mini2440移植u ...

  2. Linux Shell总结

    Shell编程总结: 1.linux命令 2.位置变量 $0 $1 $# $? 3.条件测试 [ ] [[ ]] (( )) if case 4.循环for while 5.打印echo cat 6. ...

  3. 斐波那契 (Fibonacci)数列

    尾递归会将本次方法的结果计算出来,直接传递给下个方法.效率很快. 一般的递归,在本次方法结果还没出来的时候,就调用了下次的递归, 而程序就要将部分的结果保存在内存中,直到后面的方法结束,再返回来计算. ...

  4. <a href

    <%@ page language="java" contentType="text/html; charset=ISO-8859-1" pageEnco ...

  5. LINQ 学习路程 -- 查询例子

    IList<Student> studentList = new List<Student>() { , StudentName = , StandardID = } , , ...

  6. wiredtiger存储引擎介绍——本质就是LSM,当然里面也可以包含btree和列存储

    见:http://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-perform ...

  7. Java_注解_00_资源贴

    1.Java注解教程:自定义注解示例,利用反射进行解析 2. (1)深入理解Java:注解(Annotation)基本概念 (2)深入理解Java:注解(Annotation)自定义注解入门 (3)深 ...

  8. OpenCV——径向模糊

    参考来源: 学习OpenCV:滤镜系列(5)--径向模糊:缩放&旋转 // define head function #ifndef PS_ALGORITHM_H_INCLUDED #defi ...

  9. u盘安装ubuntu 12.04 server问题解决

    问题: 使用UltraISO 9.5.3制作U盘启动盘,ISO文件使用ubuntu-12.04.2-server-i386.iso,ISO文件经过MD5验证是正确的. 将U盘查到计算机上,进bios选 ...

  10. 【LeetCode】033. Search in Rotated Sorted Array

    题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...