Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7102   Accepted: 3761

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
 
题目大意:让你求一个生成树,树边的最大值跟最小值的差值最小。
 
解题思路:其实就是kruskal求最小生成树。暴力枚举不同的最小边。
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int maxn = 110;
const int maxe = 11010;
struct Edge{
int from,to,dist,idx;
Edge(){}
Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
}edges[maxe];
struct Set{
int pa,rela;
}sets[maxn];
int ans[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int main(){
int n, m;
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
init(n);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
edges[i] = Edge(a,b,c,i);
}
sort(edges,edges+m,cmp);
int pos = 0 , cnt = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty){
continue;
}
cnt++;
sets[rooty].pa = rootx;
pos = i;
}
if(cnt != n - 1){
puts("-1");
continue;
}
int ans = edges[pos].dist - edges[0].dist;
for(int j = 1; j <= m - n + 1; j++){
cnt = 0;
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
for(int i = j; i < m; i++){
Edge & e = edges[i];
int rootx, rooty;
rootx = Find(e.from);
rooty = Find(e.to);
if(rootx == rooty) {
continue;
}
sets[rooty].pa = rootx;
cnt++;
pos = i;
}
if(cnt < n-1){
break;
}else{
int tmp = edges[pos].dist - edges[j].dist;
ans = min(ans,tmp);
}
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】的更多相关文章

  1. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  2. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  3. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. POJ 3522 - Slim Span - [kruskal求MST]

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  7. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  8. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  9. Slim Span (最小生成树)

    题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...

随机推荐

  1. SpringAOP使用

    AspectJ 注解: 1.@Aspect.@Pointcut.Advice @Aspect @Component public class SecurityAspect { @Autowired A ...

  2. MySQL数据库之插入显示图片

    图书馆系统项目需要用到好多图片,并且要求存入到数据库中,对这个特别感兴趣,于是上网查了资料,采用C#语言,进行了具体实现. 说明: 功能:往MySQL数据库插入并显示图片: 验证:执行插入功能后,我把 ...

  3. linux 远程连接ssh提示 IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY解决

    Linux ssh 远程登录到其他机器上时,有时会出现登不进去,并弹出如下类似提示的情况: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ...

  4. Ubuntu1804登录界面闪退

    目前主力机操作系统已经由Ubuntu 16.04 lts升级到Ubuntu 18.04 lts.由于是跨版本升级过来,而且由unity(个人觉得挺好)替换成了gnome3,经常出点小问题.这次由于安装 ...

  5. 平衡树学习笔记(5)-------SBT

    SBT 上一篇:平衡树学习笔记(4)-------替罪羊树 所谓SBT,就是Size Balanced Tree 它的速度很快,完全碾爆Treap,Splay等平衡树,而且代码简洁易懂 尤其是插入节点 ...

  6. Warning: Static member accessed via instance reference

    Warning: Static member accessed via instance reference Shows references to static methods and fields ...

  7. tinkphp中的自动验证

    tinkphp是国内非常流行的一个开源框架,国内大小公司都在用的框架.对于初学的好多同学感觉不太好上手,其实并没没有大家想的那么复杂.自动验证功能是thinkphp提高的一种数据验证方法,分为动态和静 ...

  8. mongoDB副本集+分片集群

    首先搭建一个副本集(三台机器) 主,从,仲裁 然后搭建分片shard1,在每台机子上启用shard1(这里就写一个分片吧!!如果写多了怕初学者会混乱,先写一个.然后可以按照同样的方法写第二个,第三个) ...

  9. IO流图

    1.InputStream类是字节输入流的抽象类,是所有字节输入流的父类,InputStream类具有层次结构如下图所示: 2.Reader类是字符输入流的抽象类,所有字符输入流的实现都是它的子类. ...

  10. sqlmap用法

    用法 Usage: python sqlmap.py [options] Options: -h, --help Show basic help message and exit -hh Show a ...