一、Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known
for all possible inputs.

Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1



It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that
0 < n < 1,000,000 (and, in fact, for many more numbers than this.)



Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.



For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.




Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 10,000 and greater than 0.



You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one
line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

二、题解



       这题真正的核心部分其实非常水,但是他的输入数据和输出要求有陷阱。首先,输入的时候要计较i和j的大小,然后不要忘了输出的时候也要换过来。这题除了暴力解决以外,还可以用到记忆化存储方法打表。这里有不水的解法http://blog.csdn.net/xieshimao/article/details/6774759。
import java.util.Scanner; 

public class Main {
public static int getCycles(int m){
int sum=0;
while(m!=1){
if(m % 2==0){
m=m / 2;
sum++;
}else{
m=3*m+1;
sum++;
}
}
return sum+1;
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int s,e,i;
while(cin.hasNext()){
s=cin.nextInt();
e=cin.nextInt();
boolean flag = false;
if(s > e){
int t=s;
s=e;
e=t;
flag=true;
}
int max=Integer.MIN_VALUE;
for(i=e;i>=s;i--){
int sum=getCycles(i);
if(sum>max)
max=sum;
}
if(flag){
System.out.println(e+" "+s+" "+max);
}else
System.out.println(s+" "+e+" "+max);
}
}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Poj1207 The 3n + 1 problem(水题(数据)+陷阱)的更多相关文章

  1. hdu-5867 Water problem(水题)

    题目链接: Water problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  2. Codeforces - 1194B - Yet Another Crosses Problem - 水题

    https://codeforc.es/contest/1194/problem/B 好像也没什么思维,就是一个水题,不过蛮有趣的.意思是找缺黑色最少的行列十字.用O(n)的空间预处理掉一维,然后用O ...

  3. poj 1658 Eva's Problem(水题)

    一.Description Eva的家庭作业里有很多数列填空练习.填空练习的要求是:已知数列的前四项,填出第五项.因为已经知道这些数列只可能是等差或等比数列,她决定写一个程序来完成这些练习. Inpu ...

  4. poj-1207 THE 3n+1 problem

    Description Problems in Computer Science are often classified as belonging to a certain class of pro ...

  5. HDU 5832 A water problem 水题

    A water problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5832 Description Two planets named H ...

  6. bestcoder 48# wyh2000 and a string problem (水题)

    wyh2000 and a string problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K ...

  7. Codeforces Round #360 (Div. 2) C. NP-Hard Problem 水题

    C. NP-Hard Problem 题目连接: http://www.codeforces.com/contest/688/problem/C Description Recently, Pari ...

  8. Codeforces Round #603 (Div. 2) A. Sweet Problem 水题

    A. Sweet Problem the first pile contains only red candies and there are r candies in it, the second ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

随机推荐

  1. Residual (numerical analysis)

    In many cases, the smallness of the residual means that the approximation is close to the solution, ...

  2. PAT 1055. 集体照 (25)

    拍集体照时队形很重要,这里对给定的N个人K排的队形设计排队规则如下: 每排人数为N/K(向下取整),多出来的人全部站在最后一排: 后排所有人的个子都不比前排任何人矮: 每排中最高者站中间(中间位置为m ...

  3. go语言之并发编程一

    Go语言最大的优势就在于并发编程.Go语言的关键字go就是开启并发编程也就是goroutine的唯一途径.一条go语句以为着一个函数或方法的并发执行.Go语句是由go关键字和表达式组成.比如下面的这种 ...

  4. python __nonzero__方法

    类的nonzero方法用于将类转换为布尔值.通常在用类进行判断和将类转换成布尔值时调用.比如语句if A: print 'foo'中就会调用A.nonzero()来判断.下面这个程序应该能帮助你理解n ...

  5. JVM性能优化, Part 5 Java的伸缩性

    很多程序员在解决JVM性能问题的时候,花开了很多时间去调优应用程序级别的性能瓶颈,当你读完这本系列文章之后你会发现我可能更加系统地看待这类的问题.我说过JVM的自身技术限制了Java企业级应用的伸缩性 ...

  6. (转)复习TCP/IP协议与Http协议的区别

    TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据.关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只 ...

  7. 321list,元组,range**数字是不可迭代的!

    一.list(列表) 列表是python中的基础数据类型之一,他是以[]括起来,每个元素以逗号隔开,而且他里面可以存放各种数据类型.列表相比于字符串,不仅可以储存不同的数据类型,而且可以储存大量数据, ...

  8. Spark Structured Streaming框架(4)之窗口管理详解

    1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...

  9. python有哪些关键字?让他自己“吐”出来!

    通过调用库来输出!for循环控制! 源代码: import keyword c = 0 for i in keyword.kwlist: print(i) c += 1 代码截图: 哈哈,关键字: F ...

  10. URL重定向之一.htaccess文件和AllowOverride指令

    通常利用Apache的rewrite模块对URL进行重写的时候,rewrite规则会写在 .htaccess文件里.但是要使Apache能够正常读取 .htaccess文件的内容,就必须对 .htac ...