相应POJ题目:点击打开链接

SuperMemo
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 11309   Accepted: 3545
Case Time Limit: 2000MS

Description

Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1,A2,
... An}. Then the host performs a series of operations and queries on the sequence which consists:

  1. ADD x y D: Add D to each number in sub-sequence {Ax ...Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results
    in {1, 3, 4, 5, 5}
  2. REVERSE x y: reverse the sub-sequence {Ax ...Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4,
    3, 2, 5}
  3. REVOLVE x y T: rotate sub-sequence {Ax ...Ay}
    T times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
  4. INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
  5. DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
  6. MIN x y: query the participant what is the minimum number in sub-sequence {Ax ...Ay}. For example, the correct answer to "MIN
    2 4" on {1, 2, 3, 4, 5} is 2

To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct
answer to each query in order to assist Jackson whenever he calls.

Input

The first line contains n (n ≤ 100000).

The following n lines describe the sequence.

Then follows M (M ≤ 100000), the numbers of operations and queries.

The following M lines describe the operations and queries.

Output

For each "MIN" query, output the correct answer.

Sample Input

5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5

Sample Output

5

题意:

对n个数有6种操作:

1)增值:ADD x y D:区间 [x, y] 的全部值添加D

2)翻转:REVERSE x y:把区间 [x, y] 翻转

3)旋转:REVOLVE x y T:对区间 [x, y]顺时针(T > 0)或逆时针(T < 0)旋转T次

4)插入:INSERT x P:在A[x]后面插入P

5)删除:DELETE x:删除A[x]

6)最值:MIN x y:求区间 [x, y] 内的最小值

思路:

Splay树综合操作;须要注意的地方有:

1、Push_down()。Push_up()的写法。应该在什么地方调用

2、旋转操作的T能够是负数

3、旋转事实上就是把区间的后一段取下放到前面或着把前一段取下放到后面,不难想明确

#include <cstdio>
#include <cstdlib>
#include <string>
#include <algorithm>
#include <string.h>
#include <cmath>
#include <iostream>
#define MIN(x, y) ((x)<(y)?(x):(y))
const int MAXN = 100100;
using namespace std;
typedef int Type; typedef struct TREE
{
Type val, add, min_v;
bool flag;
TREE *fa, *l, *r;
int sz; //以该结点为根的树的总结点数
}Tree; inline void Swap(int &a, int &b)
{
int t = a;
a = b;
b = t;
} class SplayTree
{
public:
SplayTree()
{
rt = NULL;
inf = 1000000000;
} void Push_down(Tree *T)
{
if(NULL == T) return;
if(T->add){
if(T->l){
T->l->val += T->add;
T->l->add += T->add;
T->l->min_v += T->add;
}
if(T->r){
T->r->val += T->add;
T->r->add += T->add;
T->r->min_v += T->add;
}
T->add = 0;
}
if(T->flag){
tmp = T->l;
T->l = T->r;
T->r = tmp;
if(T->l) T->l->flag ^= 1;
if(T->r) T->r->flag ^= 1;
T->flag = 0;
}
} void Push_up(Tree *T)
{
T->sz = (T->l ? T->l->sz : 0) + (T->r ? T->r->sz : 0) + 1;
if(T->l && T->r) T->min_v = MIN(T->val, MIN(T->l->min_v, T->r->min_v));
else if(T->l) T->min_v = MIN(T->l->min_v, T->val);
else if(T->r) T->min_v = MIN(T->r->min_v, T->val);
else T->min_v = T->val; //切记! } void NewNode(Tree *pre, Tree *&T, Type v)
{
T = (Tree *)malloc(sizeof(Tree));
T->val = T->min_v = v;
T->add = 0;
T->flag = 0;
T->sz = 1;
T->fa = pre;
T->l = T->r = NULL;
} void MakeTree(Tree *pre, Tree *&T, int x, int y)
{
if(x > y) return;
int mid = ((x + y)>>1);
NewNode(pre, T, c[mid]);
MakeTree(T, T->l, x, mid - 1);
MakeTree(T, T->r, mid + 1 , y);
Push_up(T);
} void Init(int n)
{
int i;
for(i = 1; i <= n; i++)
scanf("%d", c + i);
NewNode(NULL, rt, -inf);
NewNode(rt, rt->r, inf);
rt->sz = 2;
MakeTree(rt->r, rt->r->l, 1, n);
Push_up(rt->r);
Push_up(rt);
} void R_rotate(Tree *x)
{
Tree *y = x->fa;
Tree *z = y->fa;
Tree *k = x->r;
y->l = k;
x->r = y;
if(z){
if(y == z->l) z->l = x;
else z->r = x;
}
if(k) k->fa = y;
y->fa = x;
x->fa = z;
Push_up(y);
} void L_rotate(Tree *x)
{
Tree *y = x->fa;
Tree *z = y->fa;
Tree *k = x->l;
y->r = k;
x->l = y;
if(z){
if(y == z->r) z->r = x;
else z->l = x;
}
if(k) k->fa = y;
y->fa = x;
x->fa = z;
Push_up(y);
} //寻找第x个数的结点
Tree *FindTag(int x)
{
x++;
if(NULL == rt) return NULL;
Tree *p;
p = rt;
Push_down(p);
Type sum = (p->l ? p->l->sz : 0) + 1;
while(sum != x)
{
if(sum < x){
p = p->r;
x -= sum;
}
else p = p->l;
if(NULL == p) break;
Push_down(p);
sum = (p->l ? p->l->sz : 0) + 1;
}
return p;
} void Splay(Tree *X, Tree *&T)
{
Tree *p, *end;
end = T->fa;
while(X->fa != end)
{
p = X->fa;
if(end == p->fa){ //p是根结点
if(X == p->l) R_rotate(X);
else L_rotate(X);
break;
}
//p不是根结点
if(X == p->l){
if(p == p->fa->l){
R_rotate(p); //LL
R_rotate(X); //LL
}
else{
R_rotate(X); //RL
L_rotate(X);
}
}
else{
if(p == p->fa->r){ //RR
L_rotate(p);
L_rotate(X);
}
else{ //LR
L_rotate(X);
R_rotate(X);
}
}
}
T = X;
Push_up(T);
} void Get_interval(int x, int y) //把第x个数转到根,把第y个数转到根的右儿子
{
tmp = FindTag(x);
Splay(tmp, rt);
tmp = FindTag(y);
Splay(tmp, rt->r);
} void Add(int x, int y, int d)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
rt->r->l->add += d;
rt->r->l->val += d;
rt->r->l->min_v += d;
Push_up(rt->r);
Push_up(rt);
} void Reverse(int x, int y)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
rt->r->l->flag ^= 1;
} void Revolve(int x, int y, int t)
{
if(x > y) Swap(x, y);
t = t % (y - x + 1); //取模
if(t < 0) t += (y - x + 1);
if(0 == t) return;
Get_interval(y - t, y + 1);
Tree *sub = rt->r->l;
rt->r->l = NULL;
Push_up(rt->r);
Push_up(rt);
Get_interval(x - 1, x);
rt->r->l = sub;
sub->fa = rt->r;
Push_up(rt->r);
Push_up(rt);
} void Insert(int pos, int v)
{
Get_interval(pos, pos + 1);
NewNode(rt->r, rt->r->l, v);
Push_up(rt->r);
Push_up(rt);
} void Delete(int pos)
{
Get_interval(pos - 1, pos + 1);
free(rt->r->l);
rt->r->l = NULL;
Push_up(rt->r);
Push_up(rt);
} void Min(int x, int y)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
Push_down(rt->r->l);
printf("%d\n", rt->r->l->min_v);
} void Free()
{
FreeTree(rt);
} void FreeTree(Tree *T)
{
if(NULL == T) return;
FreeTree(T->l);
FreeTree(T->r);
free(T);
} private:
Type c[MAXN], inf;
Tree *rt, *tmp;
}; SplayTree spl; int main()
{
//freopen("in.txt","r",stdin);
int n, m, x, y, z;
char ord[10];
while(scanf("%d", &n) == 1)
{
spl.Init(n);
scanf("%d", &m);
while(m--)
{
scanf("%s", ord);
if(!strcmp("ADD", ord)){
scanf("%d%d%d", &x, &y, &z);
spl.Add(x, y, z);
}
if(!strcmp("REVERSE", ord)){
scanf("%d%d", &x, &y);
spl.Reverse(x, y);
}
if(!strcmp("REVOLVE", ord)){
scanf("%d%d%d", &x, &y, &z);
spl.Revolve(x, y, z);
}
if(!strcmp("INSERT", ord)){
scanf("%d%d", &x, &y);
spl.Insert(x, y);
}
if(!strcmp("DELETE", ord)){
scanf("%d", &x);
spl.Delete(x);
}
if(!strcmp("MIN", ord)){
scanf("%d%d", &x, &y);
spl.Min(x, y);
}
}
spl.Free();
}
return 0;
}

Splay树(多操作)——POJ 3580 SuperMemo的更多相关文章

  1. 平衡树(Splay):Splaytree POJ 3580 SuperMemo

    SuperMemo         Description Your friend, Jackson is invited to a TV show called SuperMemo in which ...

  2. poj 3580 SuperMemo

    题目连接 http://poj.org/problem?id=3580 SuperMemo Description Your friend, Jackson is invited to a TV sh ...

  3. POJ 3580 - SuperMemo - [伸展树splay]

    题目链接:http://poj.org/problem?id=3580 Your friend, Jackson is invited to a TV show called SuperMemo in ...

  4. POJ 3580 SuperMemo (splay tree)

    SuperMemo Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6841   Accepted: 2268 Case Ti ...

  5. POJ 3580 SuperMemo 伸展树

    题意: 维护一个序列,支持如下几种操作: ADD x y D:将区间\([x,y]\)的数加上\(D\) REVERSE x y:翻转区间\([x,y]\) REVOLVE x y T:将区间\([x ...

  6. Splay树简单操作

    前几天刚刚自学了一下splay,发现思路真简单实现起来好麻烦 先贴一下头文件 # include <stdio.h> # include <stdlib.h> # includ ...

  7. 线段树(区间操作) POJ 3325 Help with Intervals

    题目传送门 题意:四种集合的操作,对应区间的01,问最后存在集合存在的区间. 分析:U T [l, r]填充1; I T [0, l), (r, N]填充0; D T [l, r]填充0; C T[0 ...

  8. POJ 3580 SuperMemo (FHQ_Treap)

    题意:让你维护一个序列,支持以下6种操作: ADD x y d: 第x个数到第y个数加d . REVERSE x y : 将区间[x,y]中的数翻转 . REVOLVE x y t :将区间[x,y] ...

  9. 伸展树(Splay树)的简要操作

    伸展树(splay树),是二叉排序树的一种.[两个月之前写过,今天突然想写个博客...] 伸展树和一般的二叉排序树不同的是,在每次执行完插入.查询.删除等操作后,都会自动平衡这棵树.(说是自动,也就是 ...

随机推荐

  1. swiper伸缩侧边菜单栏

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  2. 接下来打算写一下visual stuido 2013使用git进行远端管理。

    虽然我有了vs的账号,也vs2013开始已经可以进行远端的账户管理了,可是vs的版控毕竟有些依赖vs,想想还是用git吧 今天把这个环境的整套都弄地基本熟了.记录一下,算是一个小结.开始搭建系统框架

  3. vs 2013 update2无法打开 edmx文件

    解决方案:在edmx文件上右键,选择ado.net entity data model designer,即可正常打开!

  4. 制作servlet模板

    制作servlet模板 选中window-->preference--->搜索template--->选中java下面的template new一个 Name的设置,当你在eclip ...

  5. [BZOJ1601][Usaco2008 Oct]灌水 最小生成树水题

    1601: [Usaco2008 Oct]灌水 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2121  Solved: 1393[Submit][St ...

  6. Codeforces Round #270 A. Design Tutorial: Learn from Math【数论/埃氏筛法】

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  7. Python的网络编程[0] -> socket[2] -> 利用 socket 建立 TCP/UDP 通信

    Socket 目录 socket 的 TCP/IP 通信基本建立过程 socket 的 UDP 通信基本建立过程 socket 的 UDP 广播式通信基本建立过程 socket 的多线程通信建立过程 ...

  8. Python的网络编程[2] -> TFTP 协议[0] -> TFTP 的基本理论

    TFTP 的基本理论 目录 通信流程 数据报文格式 传输终结 异常处理 数据丢失和超时 TFTP(Trivial File Transfer Protocol,简单文件传输协议)是UDP协议族中的一个 ...

  9. TCC分布式事务的实现原理(转载 石杉的架构笔记)

    拜托,面试请不要再问我TCC分布式事务的实现原理![石杉的架构笔记] 原创: 中华石杉 目录 一.写在前面 二.业务场景介绍 三.进一步思考 四.落地实现TCC分布式事务 (1)TCC实现阶段一:Tr ...

  10. IO 最快的read 和 write

    import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; impo ...