相应POJ题目:点击打开链接

SuperMemo
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 11309   Accepted: 3545
Case Time Limit: 2000MS

Description

Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1,A2,
... An}. Then the host performs a series of operations and queries on the sequence which consists:

  1. ADD x y D: Add D to each number in sub-sequence {Ax ...Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results
    in {1, 3, 4, 5, 5}
  2. REVERSE x y: reverse the sub-sequence {Ax ...Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4,
    3, 2, 5}
  3. REVOLVE x y T: rotate sub-sequence {Ax ...Ay}
    T times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
  4. INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
  5. DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
  6. MIN x y: query the participant what is the minimum number in sub-sequence {Ax ...Ay}. For example, the correct answer to "MIN
    2 4" on {1, 2, 3, 4, 5} is 2

To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct
answer to each query in order to assist Jackson whenever he calls.

Input

The first line contains n (n ≤ 100000).

The following n lines describe the sequence.

Then follows M (M ≤ 100000), the numbers of operations and queries.

The following M lines describe the operations and queries.

Output

For each "MIN" query, output the correct answer.

Sample Input

5
1
2
3
4
5
2
ADD 2 4 1
MIN 4 5

Sample Output

5

题意:

对n个数有6种操作:

1)增值:ADD x y D:区间 [x, y] 的全部值添加D

2)翻转:REVERSE x y:把区间 [x, y] 翻转

3)旋转:REVOLVE x y T:对区间 [x, y]顺时针(T > 0)或逆时针(T < 0)旋转T次

4)插入:INSERT x P:在A[x]后面插入P

5)删除:DELETE x:删除A[x]

6)最值:MIN x y:求区间 [x, y] 内的最小值

思路:

Splay树综合操作;须要注意的地方有:

1、Push_down()。Push_up()的写法。应该在什么地方调用

2、旋转操作的T能够是负数

3、旋转事实上就是把区间的后一段取下放到前面或着把前一段取下放到后面,不难想明确

#include <cstdio>
#include <cstdlib>
#include <string>
#include <algorithm>
#include <string.h>
#include <cmath>
#include <iostream>
#define MIN(x, y) ((x)<(y)?(x):(y))
const int MAXN = 100100;
using namespace std;
typedef int Type; typedef struct TREE
{
Type val, add, min_v;
bool flag;
TREE *fa, *l, *r;
int sz; //以该结点为根的树的总结点数
}Tree; inline void Swap(int &a, int &b)
{
int t = a;
a = b;
b = t;
} class SplayTree
{
public:
SplayTree()
{
rt = NULL;
inf = 1000000000;
} void Push_down(Tree *T)
{
if(NULL == T) return;
if(T->add){
if(T->l){
T->l->val += T->add;
T->l->add += T->add;
T->l->min_v += T->add;
}
if(T->r){
T->r->val += T->add;
T->r->add += T->add;
T->r->min_v += T->add;
}
T->add = 0;
}
if(T->flag){
tmp = T->l;
T->l = T->r;
T->r = tmp;
if(T->l) T->l->flag ^= 1;
if(T->r) T->r->flag ^= 1;
T->flag = 0;
}
} void Push_up(Tree *T)
{
T->sz = (T->l ? T->l->sz : 0) + (T->r ? T->r->sz : 0) + 1;
if(T->l && T->r) T->min_v = MIN(T->val, MIN(T->l->min_v, T->r->min_v));
else if(T->l) T->min_v = MIN(T->l->min_v, T->val);
else if(T->r) T->min_v = MIN(T->r->min_v, T->val);
else T->min_v = T->val; //切记! } void NewNode(Tree *pre, Tree *&T, Type v)
{
T = (Tree *)malloc(sizeof(Tree));
T->val = T->min_v = v;
T->add = 0;
T->flag = 0;
T->sz = 1;
T->fa = pre;
T->l = T->r = NULL;
} void MakeTree(Tree *pre, Tree *&T, int x, int y)
{
if(x > y) return;
int mid = ((x + y)>>1);
NewNode(pre, T, c[mid]);
MakeTree(T, T->l, x, mid - 1);
MakeTree(T, T->r, mid + 1 , y);
Push_up(T);
} void Init(int n)
{
int i;
for(i = 1; i <= n; i++)
scanf("%d", c + i);
NewNode(NULL, rt, -inf);
NewNode(rt, rt->r, inf);
rt->sz = 2;
MakeTree(rt->r, rt->r->l, 1, n);
Push_up(rt->r);
Push_up(rt);
} void R_rotate(Tree *x)
{
Tree *y = x->fa;
Tree *z = y->fa;
Tree *k = x->r;
y->l = k;
x->r = y;
if(z){
if(y == z->l) z->l = x;
else z->r = x;
}
if(k) k->fa = y;
y->fa = x;
x->fa = z;
Push_up(y);
} void L_rotate(Tree *x)
{
Tree *y = x->fa;
Tree *z = y->fa;
Tree *k = x->l;
y->r = k;
x->l = y;
if(z){
if(y == z->r) z->r = x;
else z->l = x;
}
if(k) k->fa = y;
y->fa = x;
x->fa = z;
Push_up(y);
} //寻找第x个数的结点
Tree *FindTag(int x)
{
x++;
if(NULL == rt) return NULL;
Tree *p;
p = rt;
Push_down(p);
Type sum = (p->l ? p->l->sz : 0) + 1;
while(sum != x)
{
if(sum < x){
p = p->r;
x -= sum;
}
else p = p->l;
if(NULL == p) break;
Push_down(p);
sum = (p->l ? p->l->sz : 0) + 1;
}
return p;
} void Splay(Tree *X, Tree *&T)
{
Tree *p, *end;
end = T->fa;
while(X->fa != end)
{
p = X->fa;
if(end == p->fa){ //p是根结点
if(X == p->l) R_rotate(X);
else L_rotate(X);
break;
}
//p不是根结点
if(X == p->l){
if(p == p->fa->l){
R_rotate(p); //LL
R_rotate(X); //LL
}
else{
R_rotate(X); //RL
L_rotate(X);
}
}
else{
if(p == p->fa->r){ //RR
L_rotate(p);
L_rotate(X);
}
else{ //LR
L_rotate(X);
R_rotate(X);
}
}
}
T = X;
Push_up(T);
} void Get_interval(int x, int y) //把第x个数转到根,把第y个数转到根的右儿子
{
tmp = FindTag(x);
Splay(tmp, rt);
tmp = FindTag(y);
Splay(tmp, rt->r);
} void Add(int x, int y, int d)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
rt->r->l->add += d;
rt->r->l->val += d;
rt->r->l->min_v += d;
Push_up(rt->r);
Push_up(rt);
} void Reverse(int x, int y)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
rt->r->l->flag ^= 1;
} void Revolve(int x, int y, int t)
{
if(x > y) Swap(x, y);
t = t % (y - x + 1); //取模
if(t < 0) t += (y - x + 1);
if(0 == t) return;
Get_interval(y - t, y + 1);
Tree *sub = rt->r->l;
rt->r->l = NULL;
Push_up(rt->r);
Push_up(rt);
Get_interval(x - 1, x);
rt->r->l = sub;
sub->fa = rt->r;
Push_up(rt->r);
Push_up(rt);
} void Insert(int pos, int v)
{
Get_interval(pos, pos + 1);
NewNode(rt->r, rt->r->l, v);
Push_up(rt->r);
Push_up(rt);
} void Delete(int pos)
{
Get_interval(pos - 1, pos + 1);
free(rt->r->l);
rt->r->l = NULL;
Push_up(rt->r);
Push_up(rt);
} void Min(int x, int y)
{
if(x > y) Swap(x, y);
Get_interval(x - 1, y + 1);
Push_down(rt->r->l);
printf("%d\n", rt->r->l->min_v);
} void Free()
{
FreeTree(rt);
} void FreeTree(Tree *T)
{
if(NULL == T) return;
FreeTree(T->l);
FreeTree(T->r);
free(T);
} private:
Type c[MAXN], inf;
Tree *rt, *tmp;
}; SplayTree spl; int main()
{
//freopen("in.txt","r",stdin);
int n, m, x, y, z;
char ord[10];
while(scanf("%d", &n) == 1)
{
spl.Init(n);
scanf("%d", &m);
while(m--)
{
scanf("%s", ord);
if(!strcmp("ADD", ord)){
scanf("%d%d%d", &x, &y, &z);
spl.Add(x, y, z);
}
if(!strcmp("REVERSE", ord)){
scanf("%d%d", &x, &y);
spl.Reverse(x, y);
}
if(!strcmp("REVOLVE", ord)){
scanf("%d%d%d", &x, &y, &z);
spl.Revolve(x, y, z);
}
if(!strcmp("INSERT", ord)){
scanf("%d%d", &x, &y);
spl.Insert(x, y);
}
if(!strcmp("DELETE", ord)){
scanf("%d", &x);
spl.Delete(x);
}
if(!strcmp("MIN", ord)){
scanf("%d%d", &x, &y);
spl.Min(x, y);
}
}
spl.Free();
}
return 0;
}

Splay树(多操作)——POJ 3580 SuperMemo的更多相关文章

  1. 平衡树(Splay):Splaytree POJ 3580 SuperMemo

    SuperMemo         Description Your friend, Jackson is invited to a TV show called SuperMemo in which ...

  2. poj 3580 SuperMemo

    题目连接 http://poj.org/problem?id=3580 SuperMemo Description Your friend, Jackson is invited to a TV sh ...

  3. POJ 3580 - SuperMemo - [伸展树splay]

    题目链接:http://poj.org/problem?id=3580 Your friend, Jackson is invited to a TV show called SuperMemo in ...

  4. POJ 3580 SuperMemo (splay tree)

    SuperMemo Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6841   Accepted: 2268 Case Ti ...

  5. POJ 3580 SuperMemo 伸展树

    题意: 维护一个序列,支持如下几种操作: ADD x y D:将区间\([x,y]\)的数加上\(D\) REVERSE x y:翻转区间\([x,y]\) REVOLVE x y T:将区间\([x ...

  6. Splay树简单操作

    前几天刚刚自学了一下splay,发现思路真简单实现起来好麻烦 先贴一下头文件 # include <stdio.h> # include <stdlib.h> # includ ...

  7. 线段树(区间操作) POJ 3325 Help with Intervals

    题目传送门 题意:四种集合的操作,对应区间的01,问最后存在集合存在的区间. 分析:U T [l, r]填充1; I T [0, l), (r, N]填充0; D T [l, r]填充0; C T[0 ...

  8. POJ 3580 SuperMemo (FHQ_Treap)

    题意:让你维护一个序列,支持以下6种操作: ADD x y d: 第x个数到第y个数加d . REVERSE x y : 将区间[x,y]中的数翻转 . REVOLVE x y t :将区间[x,y] ...

  9. 伸展树(Splay树)的简要操作

    伸展树(splay树),是二叉排序树的一种.[两个月之前写过,今天突然想写个博客...] 伸展树和一般的二叉排序树不同的是,在每次执行完插入.查询.删除等操作后,都会自动平衡这棵树.(说是自动,也就是 ...

随机推荐

  1. spring boot 2.0之后默认的连接池 HIkariCP介绍

    HIkariCP链接池比之传统的Tomcat JDBC datasource .c3p0 datasource 等传统链接池优势太大,在获取链接释放链接,执行效率上面高出很多,这个产品的口号是“快速. ...

  2. Spring 的IOC 和Aop

    Spring 的IOC 和Aop

  3. Linux Mint---更新软件源

    安装完系统之后第一件事情就是更新软件源,为接下来的各种工作作准备,这个也很简单,直接打开software source设置一下, 然后打开software manager更新一下就好了.

  4. 转 Scrapy笔记(5)- Item详解

    Item是保存结构数据的地方,Scrapy可以将解析结果以字典形式返回,但是Python中字典缺少结构,在大型爬虫系统中很不方便. Item提供了类字典的API,并且可以很方便的声明字段,很多Scra ...

  5. kubernetes 安装(全)

    #http://blog.csdn.net/zhuchuangang/article/details/76572157#https://kubernetes.io/docs/setup/indepen ...

  6. spark streaming 异常No output streams registered, so nothing to execute

    实现spark streaming demo时,代码: public static void main (String[] args) { SparkConf conf = new SparkConf ...

  7. Selenium2+python自动化3-解决pip使用异常【转载】

    一.pip出现异常 有一小部分童鞋在打开cmd输入pip后出现下面情况:Did not provide a commandDid not provide a command?这是什么鬼?正常情况应该是 ...

  8. 来杯咖啡-装饰者模式(Decorator)

    前言 上篇[观察者模式]发布已经近一个月了,个人感觉反应并不太理想,因为大家响应都不是很积极,不知是文章那里写得有问题,而且也没有人提出过有价值的改进建议,多少感觉有些失望L!因为工作繁忙,所以不可能 ...

  9. Codeforces 1010D Mars rover

    题目大意:对于一个不完全二分图,根节点为1,叶节点值为0或1,非叶节点包含一个操作(and,or,xor,not),求改变各个叶节点的值时(即0改为1,1改为0),根节点的值是多少 解法:遍历图求各节 ...

  10. SQL PARTITION BY:列值改变时重置计数

    现有数据如下: 需求:以科目为单位 对分数进行排序 SELECT *, ROW_NUMBER() OVER (PARTITION BY 科目 ORDER BY 分数 DESC) AS NUM FROM ...