学习链接:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html

先来学习一下什么是欧几里得算法:

欧几里得原理是:两个整数a ,b的公约数等于b ,a%b这两个数的公约数。即gcd(a,b)=gcd(b,a%b),他们的任何公约数都是相同的,所以他们的最大公约数也是相同的。

那么结合任何数和0的最大公约数都是他自己,就可以得出最大公约数的求解算法了。

 int gcd(int a, int b)
{
if(b==)
return a;
else
return (b,a%b);
}

下面是拓展欧几里得算法:

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:要证明这个式子成立,就是要找出整数对x,y。我们用递归的思想去寻找x,y。

1.显然当b=0时,gcd(a,b)=a,x = 1,y = 0;

2.ab!=0时,

假设:ax1+by1 = gcd(a,b);

bx2+(a % b)y2 = gcd(b,a%b);

又因为gcd(a,b)=gcd(b,a%b),所以有

ax1 +by1 = bx2+(a%b)y2;

以此类推:ax1 +by1 = bx2+(a%b)y2 = ……=#xn +(*%#)yn;

由此可见当*%#==0时,就可以知道xn,yn,以及#,*的值,这时如果在知道xn,yn和x(n-1),y(n-1)之间的递推关系就可以求出x1,y1了。

求递推关系:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

证明的递推代码如下,也就是求x,y的代码:

 int exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;
y=;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return r;
}

我觉得这个代码写的还是挺吊的,至少以现在我的水平来看;嗯,要加到递归学习中去。非递归代码也放在这儿了:

 int exgcd(int m,int n,int &x,int &y)
{
int x1,y1,x0,y0;
x0=; y0=;
x1=; y1=;
x=; y=;
int r=m%n;
int q=(m-r)/n;
while(r)
{
x=x0-q*x1; y=y0-q*y1;
x0=x1; y0=y1;
x1=x; y1=y;
m=n; n=r; r=m%n;
q=(m-r)/n;
}
return n;
}

下面讲一下应用:欧几里得算法主要有三个方面的应用:

1.求解不定方程;

2.求解模线性方程;

3.求解模的逆元;

(1)使用扩展欧几里德算法解决不定方程的办法:(来源:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html)

对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
  上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:
  p = p0 + b/Gcd(p, q) * t 
  q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
  至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),

p * a+q * b = c的其他整数解满足:

  p = p1 + b/Gcd(a, b) * t
  q = q1 - a/Gcd(a, b) * t(其中t为任意整数)
  p 、q就是p * a+q * b = c的所有整数解。
 
 

POJ 1601 拓展欧几里得算法的更多相关文章

  1. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  2. 数论入门——斐蜀定理与拓展欧几里得算法

    斐蜀定理 内容 斐蜀定理又叫贝祖定理,它的内容是这样的: 若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd ...

  3. 欧几里得 & 拓展欧几里得算法 解说 (Euclid & Extend- Euclid Algorithm)

    欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...

  4. ACM数论-欧几里得与拓展欧几里得算法

    欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...

  5. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  6. hdu 1576 A/B 拓展欧几里得算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  8. POJ 1061 青蛙的约会(扩展欧几里得算法)

    http://poj.org/problem?id=1061 思路: 搞懂这个扩展欧几里得算法花了不少时间,数论真的是难啊. 含义:找出一对整数,使得ax+by=gcd(a,b). 接下来看这道题目, ...

  9. 欧几里得(Euclid)与拓展的欧几里得算法

    欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一 ...

随机推荐

  1. LINQ 学习路程 -- 查询操作 Aggregate

    聚合操作执行数学的运算,如平均数.合计.总数.最大值.最小值 Method Description Aggregate 在集合上执行自定义聚集操作 Average 求平均数 Count 求集合的总数 ...

  2. 红米note.线刷

    1.第一代 红米note 时间:20180121 这次 线刷之后,摄像头还是模糊,扫描小一点的二维码的时候 还是一片模模糊糊... 2.ZC:我下载的“通用刷机工具”名为:MiFlash2017-12 ...

  3. Android之史上最全最简单最有用的第三方开源库收集整理

    Android开源库 自己一直很喜欢Android开发,就如博客签名一样, 我是程序猿,我为自己代言 . 在摸索过程中,GitHub上搜集了很多很棒的Android第三方库,推荐给在苦苦寻找的开发者, ...

  4. Pyton基础-base64加解密

    base64加密后是可逆的,所以url中传输参数一般用base64加密 import base64 s='username=lanxia&username2=zdd' new_s=base64 ...

  5. 将session存入数据库,memcache的方法

    //存入数据库 <?phpif(!$con = mysql_connect('localhost','root','123456')){    die('连接数据库失败');}$link = m ...

  6. ONVIF测试方法及工具

    设备是否支持ONVIF验证1 ONVIF Test Tool安装1.1PC安装环境要求:装有Microsoft .Net Framework 3.5或以上版本.1.2安装源文件请见:ONVIF Con ...

  7. UVA12163 游戏

    题目大意 现在有两个人在一个n个结点的有向图上玩一个双人游戏,保证图中无环和自圈.游戏的规则如下:1.初始的时候$i$号点有一个正权值$value_i$2.两名玩家依次操作,每个玩家在当前回合可以选择 ...

  8. ACM学习历程—HDU5586 Sum(动态规划)(BestCoder Round #64 (div.2) 1002)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5586 题目大意就是把一段序列里面的数替换成f(x),然后让总和最大. 首先可以计算出初始的总和,以及每 ...

  9. 问题6:如何让字典保持有序(使用collections的OrderedDict方法)

    from collections imort OrderedDict d = OrderedDict() d['aa'] = (1, 30) d['bb'] = (2, 31) d['cc'] = ( ...

  10. SQL介绍(1)

    SQL 是用于访问和处理数据库的标准的计算机语言. SQL,指结构化查询语言,全称是 Structured Query Language. SQL 让您可以访问和处理数据库. SQL 是一种 ANSI ...