Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1551  Solved: 549
[Submit][Status][Discuss]

Description

Xaviera现在遇到了一个有趣的问题。
平面上有N个点,Xaviera想找出周长最小的三角形。
由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题。
为了减小问题的难度,这里的三角形也包括共线的三点。

Input

第一行包含一个整数N表示点的个数。
接下来N行每行有两个整数,表示这个点的坐标。

Output

输出只有一行,包含一个6位小数,为周长最短的三角形的周长(四舍五入)。

Sample Input

4
1 1
2 3
3 3
3 4

Sample Output

3.414214

HINT

100%的数据中N≤200000。

Source

Day1

 

题解: 

    ①cdq分治:对点的x坐标排序,然后进行分治,同时分治完了还需要求两边的互相影响。

        一、在左边取两个点,右边一个。二、在右边取两个点,左边一个。

    ②再对分治左右两边的点再分别按照y值排序,

    ③剪枝:因为已经出来了一个比较优的ans,所以当一个点距离两边中界过远,那么我们就把它扔掉再不用管了。还有就是两边的点,y坐标距离过大的也不能进行选择,所以又进行一次剪枝。

     ④把上述东西串起来的是暴力枚举。

#include<cmath>
#include<cstdio>
#define eps 1e-9
#include<cstring>
#include<algorithm>
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
using namespace std;const int N=200010;
struct P{double x,y;bool operator<(const P &a)const{return y<a.y;}}s[N],newq[N],tmp[N];
double ans=1e9;int n;double sqr(double x){return x*x;}bool cmp(P a,P b){return a.x<b.x;}
double dis(P a,P b){return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));}
double Cal(P a,P b,P c){return dis(a,b)+dis(b,c)+dis(c,a);}
void solve(int l,int r)
{
int mid=(l+r)>>1,top=0,tp1=l,tp2=mid+1,Mid=s[mid].x;
if(r-l+1<=3){sort(s+l,s+r+1);if(r-l+1==3)ans=min(ans,Cal(s[l],s[l+1],s[r]));return;} solve(l,mid);solve(mid+1,r);
go(i,l,r)if((s[tp1]<s[tp2]||tp2>r)&&tp1<=mid)tmp[i]=s[tp1++];else tmp[i]=s[tp2++];
memcpy(s+l,tmp+l,sizeof(P)*(r-l+1)); go(i,l,r)if(abs(s[i].x-Mid)<ans/2)newq[++top]=s[i];
go(i,1,top)ro(j,i-1,1)
{
if(newq[i].y-newq[j].y>=ans/2)break;
ro(k,j-1,1)ans=min(ans,Cal(newq[i],newq[j],newq[k]));
}
}
int main()
{
scanf("%d",&n);go(i,1,n)
scanf("%lf%lf",&s[i].x,&s[i].y);
sort(s+1,s+n+1,cmp);
solve(1,n);printf("%.6f\n",ans);
}//Paul_Guderian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

燃烧的河流推倒了祈祷者的灯塔,

告诫的引擎怒吼着圣洁的墓志铭。——————汪峰《贫瘠之歌》

【BZOJ 2458 最小三角形】的更多相关文章

  1. BZOJ 2458 最小三角形 | 平面分治

    BZOJ 2458 最小三角形 题面 一个平面上有很多点,求他们中的点组成的周长最小的三角形的周长. 题解 跟平面最近点对差不多,也是先把区间内的点按x坐标从中间分开,递归处理,然后再处理横跨中线的三 ...

  2. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  3. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  4. BZOJ2458:[BJOI2011]最小三角形——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 Description Xaviera现在遇到了一个有趣的问题. 平面上有N个点,Xavier ...

  5. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  6. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  7. [BJWC2011]最小三角形(分治+最近点对)

    题面:BJWC2011 最小三角形 \(solution:\) 昨天才学完平面最近点对,今天就要求平面最近的三个点,显然不是巧合. 仔细一思考,我们用来求平面最近点对的方法不就可以用到三个点上吗? 就 ...

  8. BZOJ2458 Beijing2011最小三角形(分治)

    类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...

  9. [BZOJ]2458: [BeiJing2011]最小三角形

    题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长.(N<=200,000) 思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力 ...

随机推荐

  1. 你们知道SEO每天都在做什么吗?

    医院也有做SEO的,专门负责医院网站优化工作,那么医院的SEO每天都做什么呢?偶然见到一篇文章,转载来分享给大家.感觉写的很实在. 大凡做seo工作的人都知道seo工作者每天都要做大量的外链,像有些个 ...

  2. Scala构建元数据

    反射方式构建元数据: 通过反射来获取RDD中的Schema信息.这种方式适合于列名(元数据)已知的情况下 步骤: 1.SparkConf配置环境 2.SparkContext初始化上下文 3.SQLC ...

  3. 数据分析处理库Pandas——显示设置

    获取最多打印行数 显示内容超出部分打印成省略号. 设置最多打印行数 获取最多打印列数 显示内容超出部分打印成省略号. 设置最多打印列数 获取打印字符串的最大长度 显示内容超出部分打印成省略号. 设置打 ...

  4. NOI P1896 互不侵犯 状压DP

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  5. POJ:3684-Physics Experiment(弹性碰撞)

    Physics Experiment Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3392 Accepted: 1177 Sp ...

  6. [Bzoj3894]文理分科(最小割)

    Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...

  7. Git-Git库管理

    对象和引用哪里去了? 从GitHub上克隆一个示例版本库,这个版本库在"历史穿梭"一章就已经克隆过一次了,现在要重新克隆一份.为了和原来的克隆相区别,克隆到另外的目录.执行下面的命 ...

  8. PHP.31-TP框架商城应用实例-后台7-商品会员修改-页面优化,多表数据更新

    商品表修改功能 1.页面优化,类似添加页面 <layout name="layout" /> <div class="tab-div"> ...

  9. 3 破解密码,xshell连接

    1.破解root密码 (1)启动电脑,按上下键进入启动菜单界面,选择第二个Red Hat Enterprise Linux Server, with Linux 0-rescue-* (2)按 'e' ...

  10. Postman-进阶(2)

    Postman-进阶(2) Postman-简单使用 Postman-进阶使用 Postman-CI集成Jenkins 管理请求 保存请求-添加“打开百度首页请求” 设置请求方式为Get,地址为www ...