雅礼集训 Day3 T2 u 解题报告
u
题目背景
\(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\)。小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了。
于是,\(\frac 14\)只好来问你,这道题是这样的:
题目描述
考虑一个\(n\times n\)的矩阵\(A\),初始所有元素均为\(0\)。
执行\(q\)次如下形式的操作:给定\(4\)个整数\(r,c,l,s\),对于每个满足\(x\in [r,r+l),y\in [c,x-r+c]\)的元素\((x,y)\),将权值增加\(s\)。也就是,给一个左上顶点为\((r,c)\)、直角边长为\(l\)的下三角区域加上\(s\)。
输出最终矩阵的元素异或和。
输出输出格式
输入格式
从文件u.in
中读入数据。
第一行两个整数\(n,q\)。
接下来\(q\)行,每行四个整数\(r,c,l,s\),代表一次操作。
输出格式
输出到文件u.out 中。
输出一行,一个整数,代表答案。
数据范围
保证\(n\in [1,10^3]\),\(q\in [0,3\times 10^5]\),\(r,c,l\in [1,n]\),\(s\in [1,10^9]\)。
\(\text{Subtask}\) | 分值 | \(n\le\) | \(q\le\) | 其他限制 |
---|---|---|---|---|
\(1\) | \(1\) | \(10^3\) | \(0\) | 无 |
\(2\) | \(19\) | \(3\times 10^2\) | \(4\times 10^2\) | 无 |
\(3\) | \(27\) | \(10^3\) | \(2\times 10^3\) | 无 |
\(4\) | \(14\) | \(10^3\) | \(3\times 10^5\) | 保证\(r+l=n+1\)且\(c=1\) |
\(5\) | \(17\) | \(10^3\) | \(3\times 10^5\) | 保证\(r+l=n+1\) |
\(6\) | \(22\) | \(10^3\) | \(3\times 10^5\) | 无 |
没有修改为啥不直接查分呢??
我居然只写了拿差分暴力的分。。
注意到改差分数组是改一个列和一个斜着的东西
然而这些都可以看做是连续的
于是可以维护差分数组的差分
最后才加回去
Code:
雅礼集训 Day3 T2 u 解题报告的更多相关文章
- 雅礼集训 Day3 T2 v 解题报告
v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...
- 雅礼集训 Day3 T3 w 解题报告
w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...
- 雅礼集训 Day6 T2 Equation 解题报告
Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...
- 「雅礼集训 2017 Day2」解题报告
「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- 雅礼集训 Day1 T3 画作 解题报告
画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...
- 雅礼集训 Day7 T1 Equation 解题报告
Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...
- 雅礼集训 Day6 T1 Merchant 解题报告
Merchant 题目描述 有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\). 当前处于时刻\(0\),你可 ...
- 雅礼集训 Day5 T3 题 解题报告
题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...
随机推荐
- CSS之美化页面
CSS之美化页面 <span></span> 标签 <span>行内定义一个区域 就是说一行可以被<span>划分多个小区域,从而实现某种特定效果.&l ...
- oracle下表空间、用户创建以及用户授权流程
Oracle,表空间的建立.用户创建以及用户授权 主要是以下几步,挑选需要的指令即可: # 首先以scott用户作为sysdba登陆 conn scott/tiger as sysdba #创建用户 ...
- 在ubuntu上安装subline
Sublime Text is a most popular, lightweight and smart cross-platform text and source code editor wit ...
- php 文件操作和文件上传
文件操作 http://www.w3school.com.cn/php/php_file.asp http://www.w3school.com.cn/php/php_file_open.asp ht ...
- python中的集合内置方法小结
#!/usr/local/bin/python3 # -*- coding:utf-8 -*- #集合性质:需要传入一个list,且不含重复的元素,无序 list_1=[1,2,1,4,5,8,3,4 ...
- MAC下MySQL初始密码忘记修改初始密码
解决MAC下MySQL忘记初始密码的方法分享给大家,供大家参考,具体内容如下 第一步: 点击系统偏好设置->最下边点MySQL,在弹出页面中,点击stop MySQL Servier,输入密码关 ...
- 解答室内定位技术新方向:蓝牙AoA定位,值得了解 ——概念了解
转载搜狐 室内定位一直被炒的非常火的黑科技,也是近年资本追逐的热点,市场上一直有众多宣称可以做到厘米级,米级精度定位的公司,但问题很多,无法大规模商用.近些年有很多人尝试使用蓝牙beacon方式做定位 ...
- VUE前端无法启动
cd 到client中,使用npm run dev ,一直卡着也不报错,启动不了项目 可以直接使用 ,需要进入root目录进行 cnpm install npm -g
- TouTiao开源项目 分析笔记15 新闻详情之两种类型的实现
1.预览效果 1.1.首先看一下需要实现的效果. 第一种,文字类型新闻. 第二种,图片类型新闻. 1.2.在NewsArticleTextViewBinder中设置了点击事件 RxView.click ...
- PHP.18-图片等比例缩放
图片等比例缩放 自定义函数ImageUpdateSize($pricname, $maxx, $maxy, $pre) 1.$pricname:被缩放的图片源(路径):2.$maxx,$maxy:缩放 ...